Modulators of the Hop-HSP90 Protein-Protein Interaction Disrupt KSHV Lytic Replication.

ACS Infect Dis

Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa.

Published: November 2024

The central role of the chaperome in maintaining cellular proteostasis has seen numerous viral families evolve to parasitically exploit host chaperones in their life cycle. The HSP90 chaperone protein and its cochaperone Hop have both individually been shown to be essential factors for Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. Given the fundamental regulatory role that protein-protein interactions (PPIs) play in cellular biology, we reasoned that disrupting the Hop-HSP90 PPI may provide a new host-based target for inhibiting KSHV lytic replication. This study expands upon a previous report of non-natural peptides, which were found to disrupt the association between the Hop domain and its interacting HSP90. Here, in addition to providing insight into the structure-activity relationships of PPI inhibition, we show disruption of the full-length Hop-HSP90 PPI. The inhibitory peptides selectively engaged the Hop domain in cell lysates and when tethered to a cell-penetrating peptide acted as noncytotoxic inhibitors of KSHV lytic replication by lowering the viral load, preventing the production of infectious virions, and reducing the expression of KSHV lytic genes. In addition to tentative evidence of Hop-HSP90 PPI as a much-needed target for KSHV drug discovery, this study represents an important step in understanding viral interactions with the host proteostasis machinery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555673PMC
http://dx.doi.org/10.1021/acsinfecdis.4c00429DOI Listing

Publication Analysis

Top Keywords

kshv lytic
20
lytic replication
16
hop-hsp90 ppi
12
hop domain
8
kshv
6
lytic
5
modulators hop-hsp90
4
hop-hsp90 protein-protein
4
protein-protein interaction
4
interaction disrupt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!