Background And Aims: Mucilage has been hypothesized to soften the gradients in matric potential at the root-soil interface, hereby facilitating root water uptake in dry soils and maintaining transpiration with a moderate decline in leaf water potential. So far, this hypothesis has been tested only through simplified experiments and numerical simulations. However, the impact of mucilage on the relationship between transpiration rate (E) and leaf water potential (ψleaf) at the plant scale remains speculative.

Methods: We utilized an automated root pressure chamber to measure the E(ψleaf) relationship in two cowpea genotypes with contrasting mucilage production. We then leveraged a soil-plant hydraulic model to reproduce the experimental observations and inferred the matric potential at the root-soil interface for both genotypes.

Key Results: In wet soil, the relationship between the leaf water potential and transpiration rate (E) was linear for both genotypes. However, as the soil progressively dried, the E(ψleaf) relationship exhibited nonlinearity. Genotype with low mucilage production exhibited nonlinearity earlier during soil drying, i.e. in wetter soil conditions, (soil water content < 0.36 cm3 cm-3) compared to Genotype with high mucilage production (soil water content < 0.30 cm3 cm-3). The incidence of nonlinearity was concomitant with the decline in matric potential across the rhizosphere. High mucilage production attenuated water potential diminution at the root-soil interface with increased E. This shows, for the first time at the plant scale, that root mucilage softened the gradients in matric potential and maintained transpiration in drying soils. The model simulations indicate that a plausible explanation for this effect is an enhanced hydraulic conductivity of the rhizosphere in genotype with higher mucilage production.

Conclusions: Mucilage exudation maintains the hydraulic continuity between soil and roots and decelerates the drop in matric potential near the root surface, hereby postponing the hydraulic limitations to transpiration during soil drying.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcae193DOI Listing

Publication Analysis

Top Keywords

matric potential
20
water potential
16
mucilage production
16
plant scale
12
root-soil interface
12
leaf water
12
mucilage
10
potential
9
water
8
root water
8

Similar Publications

Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM).

View Article and Find Full Text PDF

Low organic matter content is one of the main constraints in arid and semiarid regions. This constraint and its negative influences on soils and plant growth may be alleviated by biochar (BC). Furthermore, improving soil physical and hydraulic attributes by application of biochar has received increased attention.

View Article and Find Full Text PDF

Background And Aims: Mucilage has been hypothesized to soften the gradients in matric potential at the root-soil interface, hereby facilitating root water uptake in dry soils and maintaining transpiration with a moderate decline in leaf water potential. So far, this hypothesis has been tested only through simplified experiments and numerical simulations. However, the impact of mucilage on the relationship between transpiration rate (E) and leaf water potential (ψleaf) at the plant scale remains speculative.

View Article and Find Full Text PDF

Local neighborhood affects stem rehydration under drought: evidence from mixtures of European beech with two different conifers.

Tree Physiol

October 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany.

Mixed-species forests are, for multiple reasons, promising options for forest management in Central Europe. However, the extent to which interspecific competition affects tree hydrological processes is not clear. High-resolution dendrometers capture subdaily variations in stem diameter; they can simultaneously monitor stem growth (irreversible changes in diameter) and water status (reversible changes) of individual trees.

View Article and Find Full Text PDF

Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!