Dung beetles impressively coordinate their 6 legs to effectively roll large dung balls. They can also roll dung balls varying in the weight on different terrains. The mechanisms underlying how their motor commands are adapted to walk and simultaneously roll balls (multitasking behavior) under different conditions remain unknown. This study unravels the mechanisms of how dung beetles roll dung balls and adapt their leg movements to stably roll balls over different terrains for multitasking robots. A modular neural-based loco-manipulation control inspired by and based on ethological observations of the ball-rolling behavior of dung beetles is synthesized. The proposed neural-based control contains a central pattern generator (CPG) module, a pattern formation network (PFN) module, and a robot orientation control (ROC) module. The integrated control mechanisms can control a dung beetle-like robot (ALPHA) with biomechanical feet to perform adaptive (multitasking) loco-manipulation (walking and ball-rolling) on various terrains (flat and uneven). It can deal with different ball weights (2.0 and 4.6 kg) and ball types (soft and rigid). The control mechanisms can serve as guiding principles for solving sensory-motor coordination for multitasking robots. Furthermore, this study contributes to biological research by enhancing the understanding of sensory-motor coordination for adaptive (multitasking) loco-manipulation behavior in animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653611 | PMC |
http://dx.doi.org/10.1002/advs.202408080 | DOI Listing |
Protoplasma
January 2025
Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
Copris are part of the Scarabaeidae family of Coleoptera. Copris are dung beetles or coprophagous beetles. These insects are called tunnelers because they excavate channels in the substrate.
View Article and Find Full Text PDFEcol Evol
January 2025
Programa de Pós-Graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil.
The growth of cities is one of the main direct and indirect factors responsible for the loss of native vegetation cover. Urbanization directly affects the biological communities inhabiting forest remnants inserted in cities, compromising the maintenance of urban and natural ecosystems. By understanding the effects of landscape transformation due to urbanization, we can have insights regarding the distribution of land uses that allow a proper maintenance of the urban ecosystems.
View Article and Find Full Text PDFInsects
December 2024
Laboratoire de Biotechnologie, Conservation et Valorisation des Ressources Naturelles, Faculté des Sciences de Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, B.P. 1796 Fès-Atlas, Fez 30000, Morocco.
This study examined the impact of dung beetles on both sorghum growth and the physico-chemical properties of the soil over a two-month period. Four dung beetle species (, subsp. , , and ) were introduced into experimental setups, consisting of containers filled with sterilised clay-loam soil, with three treatment groups: [cow dung + beetles], [cow dung only], and a control group (no dung nor beetles), in order to evaluate their effects on various growth parameters, including the plant height, biomass, leaf area, and chlorophyll concentration.
View Article and Find Full Text PDFInsects
November 2024
Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
Dung beetles mostly feed on mammal dung. Throughout the European Alps, the dung produced by local domestic ungulates attracts many species of dung beetles, giving rise to rich and diversified communities that play an important role in the Alpine agricultural ecosystem. There is, therefore, understandable concern about the introduction of exotic livestock, such as alpacas ( (Linnaeus, 1758)), into the region.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.
Non-indigenous dung beetle (Coleoptera: Scarabaeoidea) species in North America are important contributors to ecosystem functions, particularly in pasture-based livestock systems. Despite the significant body of research surrounding non-indigenous (and often invasive) dung beetles in agricultural contexts, there has been minimal study concerning the impact that these species may have on indigenous dung beetle populations in natural environments. Here we examine the possible impact of the introduced dung beetle on indigenous dung beetle populations via use of indigenous mammal dung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!