Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653614 | PMC |
http://dx.doi.org/10.1002/advs.202406184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!