Single walled carbon nanotubes (SWCNT) have recently been demonstrated as modular, near-infrared (nIR) probes for reporting hydrolase activity; however, these have been limited to naturally amphipathic substrate targets used to noncovalently functionalize the hydrophobic nanoparticles. Many relevant substrate targets are hydrophobic (such as recalcitrant biomass) and pose a challenge for modular functionalization. In this work, a facile mechanochemistry approach was used to couple insoluble substrates, such as lignin, to SWCNT using l-lysine amino acid as a linker and tip sonication as the mechanochemical energy source. The proposed coupling mechanism is ion pairing between the lysine amines and lignin carboxylic acids, as evidenced by FTIR, NMR, SEM, and elemental analyses. The limits of detection for the lignin-lysine-SWCNT (LLS) probe were established using commercial enzymes and found to be 0.25 ppm (volume basis) of the formulated product. Real-world use of the LLS probes was shown by evaluating soil hydrolase activities of soil samples gathered from different corn root proximal locations and soil types. Additionally, the probes were used to determine the effect of storage temperature on the measured enzyme response. The modularity of this mechanochemical functionalization approach is demonstrated with other substrates such as zein and 9-anthracenecarboxylic acid, which further corroborate the mechanochemical mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c13800DOI Listing

Publication Analysis

Top Keywords

mechanochemical functionalization
8
hydrolase activity
8
substrate targets
8
facile mechanochemical
4
functionalization hydrophobic
4
hydrophobic substrates
4
substrates single-walled
4
single-walled carbon
4
carbon nanotube
4
nanotube based
4

Similar Publications

Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that combine high ionic conductivity with stability in contact with the highly reducing potentials of next-generation anodes. Fully reduced electrolytes, based on irreducible anions, offer a promising solution by avoiding electrolyte decomposition altogether.

View Article and Find Full Text PDF

Boosting Anionic Redox Reactions of Li-Rich Cathodes through Lattice Oxygen and Li-Ion Kinetics Modulation in Working All-Solid-State Batteries.

Adv Mater

December 2024

Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

The use of lithium-rich manganese-based oxides (LRMOs) as the cathode in all-solid-state batteries (ASSBs) holds great potential for realizing high energy density over 600 Wh kg. However, their implementation is significantly hindered by the sluggish kinetics and inferior reversibility of anionic redox reactions of oxygen in ASSBs. In this contribution, boron ions (B) doping and 3D LiBO (LBO) ionic networks construction are synchronously introduced into LRMO materials (LBO-LRMO) by mechanochemical and subsequent thermally driven diffusion method.

View Article and Find Full Text PDF

Engineering LiBH-Based Materials for Advanced Hydrogen Storage: A Critical Review of Catalysis, Nanoconfinement, and Composite Design.

Molecules

December 2024

College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China.

Lithium borohydride (LiBH) has emerged as a promising hydrogen storage material due to its exceptional theoretical hydrogen capacity (18.5 wt.%).

View Article and Find Full Text PDF

Mechanochemical Release of 9,10-Diphenylanthracene via Flex-Activation of Its 1,4-Diels-Alder Adduct.

ACS Macro Lett

December 2024

School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China.

Flex-activated mechanophores capable of releasing small molecules utilize bond bending to facilitate their mechanochemical activation without compromising the overall macromolecular architecture, which have great potential in various applications. However, the development of such mechanophores remains underexplored. Here we report a novel flex-activated mechanophore based on the 1,4-Diels-Alder (DA) adduct of 9,10-diphenylanthracene (DPA) with acetylenedicarboxylate (ADC).

View Article and Find Full Text PDF

2,5-Dihydroxyterephthalic acid (H) is well-known for its use in the construction of functional metal-organic frameworks (MOFs). Among them, simple coordination polymers (CPs), such as lithium and sodium coordination polymers with H, have been used successfully to synthesize electrically conductive MOFs and have also demonstrated great potential as positive or negative electrode materials on their own. However, there has been little exploration of the structure and physicochemical properties of these and other alkali complexes of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!