Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early-onset pre-eclampsia is believed to arise from defective placentation in the first trimester, leading to placental ischaemia/reperfusion (I/R) and oxidative stress. However, our current understanding of the effects of I/R and oxidative stress on trophoblast function is ambiguous in part due to studies exposing trophoblasts to hypoxia instead of I/R, and which report conflicting results. Here, we present a model of simulated ischaemia/reperfusion (SI/R) to recapitulate the pathophysiological events of early-onset pre-eclampsia (PE), by exposing first trimester cytotrophoblast HTR-8/SVneo cells to a simulated ischaemia buffer followed by reperfusion. We examined different ischaemia and reperfusion times and observed that 1 h ischaemia and 24 h reperfusion induced an increase in reactive oxygen species (ROS) production (P<0.0001) and oxygen consumption rate (P<0.01). SI/R-exposed trophoblast cells exhibited deficits in migration, proliferation, and invasion (P<0.01). While the deficits in migration and proliferation were rescued by antioxidants, suggesting an ROS-dependent mechanism, the loss of invasion was not affected by antioxidants, which suggests a divergent ROS-independent pathway. In line with this, we observed a decrease in MMP-9, the key regulatory enzyme necessary for trophoblast invasion (P<0.01), which was similarly unaffected by antioxidants, and pharmacological inhibition of MMP-9 replicated the phenotype of deficient invasion (P<0.01). Collectively, these data demonstrate that I/R impairs trophoblast migration and proliferation via a ROS-dependent mechanism, and invasion via an ROS-independent loss of MMP-9, disambiguating the role of oxidative stress and providing insights into the response of trophoblasts to I/R in the context of early-onset PE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581840 | PMC |
http://dx.doi.org/10.1042/BSR20240763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!