MHO7 (6-epi-ophiobolin G), a novel component extracted from a mangrove fungus, exhibits significant anticancer effects against breast cancer. However, the precise mechanism underlying the anticancer effects of MHO7 in prostate cancer (PCa) is yet to be fully elucidated. Therefore, this study was undertaken to assess the effect of MHO7 on PCa cells and elucidate its underlying mechanism. A series of in vitro experiments were conducted, including Cell Counting Kit-8, and plate clone formation assays, flow cytometry analysis, electron microscopy, immunofluorescence staining, western blotting, and molecular dynamics simulation. Additionally, in vivo tumor xenograft models were employed. Our findings revealed that MHO7 could induce cellular autophagy at low concentration (2 μM) and apoptosis at relatively high concentration (4 and 8 μM), leading to significant PCa cell growth inhibition. Furthermore, MHO7 triggered endoplasmic reticulum (ER) stress, which subsequently stimulated autophagy and apoptosis via IRE1α/XBP-1s signaling pathway activation. Notably, IRE1α knockdown markedly reduced MHO7-induced autophagy and apoptosis. Moreover, MHO7 targeted the IRE1α protein, thereby enhancing its stability. MHO7 also exhibited substantial anticancer activity in tumor xenograft models. Our study revealed that MHO7 holds considerable potential as an anticancer agent against PCa, attributable to its activation of ER stress-induced autophagy and apoptosis at different concentrations, facilitated by the upregulation of IRE1α expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.8354 | DOI Listing |
Int J Mol Sci
January 2025
College of Life Science, Northeast Forestry University, Harbin 150040, China.
Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
Cancer sarcopenia is highly prevalent in patients with advanced cancer, which is closely related to the disease prognosis. Overcoming cancer sarcopenia is important for cancer treatment. Cystine and theanine (CT), antioxidant amino acids, have been applied to the nutritional intervention of various diseases but their effects remain unclear on cancer sarcopenia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) "Demokritos", 153 41 Aghia Paraskevi, Greece.
: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40255 Duesseldorf, Germany.
To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!