Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Entity resolution (ER) is the process of identifying and linking records that refer to the same real-world entity. ER is a fundamental challenge in data science, and a common barrier to ER research and development is that the data fields used for this fuzzy matching are personally identifiable information, such as name, address, and date of birth. The necessary restrictions on accessing and sharing these authentic data have slowed the work in developing, testing, and adopting new methods and software for ER. We recently released , a Python package that allows users to generate simulated datasets with configurable noise approaching the scale and complexity of the data on which large organizations and federal agencies, like the US Census Bureau regularly perform ER. With pseudopeople, researchers can develop new algorithms and software for ER of US population data without needing access to personal and confidential information.
Methods: We created the simulated population data available for noising with pseudopeople using our Vivarium simulation platform. Our model simulates individuals and their families, households, and employment dynamics over time, which we observe through simulated censuses, surveys, and administrative data collection systems.
Results: Our simulation process produced over 900 gigabytes of simulated censuses, surveys, and administrative data for pseudopeople, representing hundreds of millions of simulants. A sample simulated population of thousands of simulants is now openly available to all users of the pseudopeople package, and large-scale simulated populations of millions and hundreds of millions of simulants are also available by online request through GitHub. These simulated population data are structured for use by the pseudopeople package, which includes additional affordances to add various kinds of noise to the data to provide realistic, sharable challenges for ER researchers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518969 | PMC |
http://dx.doi.org/10.12688/gatesopenres.15418.2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!