A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simulated data for census-scale entity resolution research without privacy restrictions: a large-scale dataset generated by individual-based modeling. | LitMetric

Background: Entity resolution (ER) is the process of identifying and linking records that refer to the same real-world entity. ER is a fundamental challenge in data science, and a common barrier to ER research and development is that the data fields used for this fuzzy matching are personally identifiable information, such as name, address, and date of birth. The necessary restrictions on accessing and sharing these authentic data have slowed the work in developing, testing, and adopting new methods and software for ER. We recently released , a Python package that allows users to generate simulated datasets with configurable noise approaching the scale and complexity of the data on which large organizations and federal agencies, like the US Census Bureau regularly perform ER. With pseudopeople, researchers can develop new algorithms and software for ER of US population data without needing access to personal and confidential information.

Methods: We created the simulated population data available for noising with pseudopeople using our Vivarium simulation platform. Our model simulates individuals and their families, households, and employment dynamics over time, which we observe through simulated censuses, surveys, and administrative data collection systems.

Results: Our simulation process produced over 900 gigabytes of simulated censuses, surveys, and administrative data for pseudopeople, representing hundreds of millions of simulants. A sample simulated population of thousands of simulants is now openly available to all users of the pseudopeople package, and large-scale simulated populations of millions and hundreds of millions of simulants are also available by online request through GitHub. These simulated population data are structured for use by the pseudopeople package, which includes additional affordances to add various kinds of noise to the data to provide realistic, sharable challenges for ER researchers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518969PMC
http://dx.doi.org/10.12688/gatesopenres.15418.2DOI Listing

Publication Analysis

Top Keywords

population data
12
simulated population
12
data
10
simulated
8
entity resolution
8
simulated censuses
8
censuses surveys
8
surveys administrative
8
administrative data
8
hundreds millions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!