Rational Design of Near-Infrared Fluorescent Probes for Accurately Tracking Lysosomal Viscosity with Allyl Snchoring Si-Rhodamine.

Chem Biomed Imaging

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wang-Jiang Road, Chengdu 610064, People's Republic of China.

Published: February 2024

The abnormal microenvironment parameter, viscosity, is closely connected with various diffusion processes, signal transduction, molecule interactions, and various diseases. It is greatly significant to design viscosity-dependent near-infrared (NIR) small molecule fluorescence probes for visualizing biological processes or diagnosing diseases. Herein, through the stepwise modulating structure of the silicon-rhodamine fluorophore (SR), we report three viscosity probes with allyl or methyl group as rotors, named , , and . Among them, demonstrates better viscosity responsibility from 1.0 to 1410.4 cP of viscosity. Therefore, the probe of is successfully applied to sensitively monitor lysosome microscopic viscosity changes of living cells induced by oxygen stress. What's more, based on its advantages in NIR emission (669 nm) and large Stokes shift (201 nm), we also use it to image variations of viscosity in an acute hepatitis mouse induced by carbon tetrachloride. Both time and concentration-dependent induction models display the great ability of to detect viscosity alteration. All the experimental results indicated that this allyl-rotor-based NIR viscosity probe could provide a general platform to monitor abnormal physiological processes and diseases relating to viscosity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503770PMC
http://dx.doi.org/10.1021/cbmi.3c00071DOI Listing

Publication Analysis

Top Keywords

viscosity
10
viscosity probe
8
rational design
4
design near-infrared
4
near-infrared fluorescent
4
fluorescent probes
4
probes accurately
4
accurately tracking
4
tracking lysosomal
4
lysosomal viscosity
4

Similar Publications

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

Objective: To investigate the effects of bulk-fill, resin-based composite types (high or low viscosity) on the internal adaptation of Class V restorations.

Study Design: Experimental study. Place and Duration of the Study: Hefei Stomatological Hospital, Hefei, China, from October 2022 to December 2023.

View Article and Find Full Text PDF

Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.

View Article and Find Full Text PDF

Purpose: The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups.

View Article and Find Full Text PDF

Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies.

Pharm Res

January 2025

BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.

Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.

Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!