This research introduces the Variational Graph Attention Dynamics (VarGATDyn), addressing the complexities of dynamic graph representation learning, where existing models, tailored for static graphs, prove inadequate. VarGATDyn melds attention mechanisms with a Markovian assumption to surpass the challenges of maintaining temporal consistency and the extensive dataset requirements typical of RNN-based frameworks. It harnesses the strengths of the Variational Graph Auto-Encoder (VGAE) framework, Graph Attention Networks (GAT), and Gaussian Mixture Models (GMM) to adeptly navigate the temporal and structural intricacies of dynamic graphs. Through the strategic application of GMMs, the model handles multimodal patterns, thereby rectifying misalignments between prior and estimated posterior distributions. An innovative multiple-learning methodology bolsters the model's adaptability, leading to an encompassing and effective learning process. Empirical tests underscore VarGATDyn's dominance in dynamic link prediction across various datasets, highlighting its proficiency in capturing multimodal distributions and temporal dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513757PMC
http://dx.doi.org/10.1016/j.knosys.2024.112110DOI Listing

Publication Analysis

Top Keywords

variational graph
12
graph attention
12
temporal dynamics
8
graph
5
temporal
4
dynamics unleashed
4
unleashed elevating
4
elevating variational
4
attention
4
attention introduces
4

Similar Publications

STGLR: A Spacecraft Anomaly Detection Method Based on Spatio-Temporal Graph Learning.

Sensors (Basel)

January 2025

Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, China.

Anomalies frequently occur during the operation of spacecraft in orbit, and studying anomaly detection methods is crucial to ensure the normal operation of spacecraft. Due to the complexity of spacecraft structures, telemetry data possess characteristics such as high dimensionality, complexity, and large scale. Existing methods frequently ignore or fail to explicitly extract the correlation between variables, and due to the lack of prior knowledge, it is difficult to obtain the initial relationship of variables.

View Article and Find Full Text PDF

Spatially aligned graph transfer learning for characterizing spatial regulatory heterogeneity.

Brief Bioinform

November 2024

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Spatially resolved transcriptomics (SRT) technologies facilitate the exploration of cell fates or states within tissue microenvironments. Despite these advances, the field has not adequately addressed the regulatory heterogeneity influenced by microenvironmental factors. Here, we propose a novel Spatially Aligned Graph Transfer Learning (SpaGTL), pretrained on a large-scale multi-modal SRT data of about 100 million cells/spots to enable inference of context-specific spatial gene regulatory networks across multiple scales in data-limited settings.

View Article and Find Full Text PDF

It is important in the rising demands to have efficient anomaly detection in camera surveillance systems for improving public safety in a complex environment. Most of the available methods usually fail to capture the long-term temporal dependencies and spatial correlations, especially in dynamic multi-camera settings. Also, many traditional methods rely heavily on large labeled datasets, generalizing poorly when encountering unseen anomalies in the process.

View Article and Find Full Text PDF

Existing studies indicate that dysregulation or abnormal expression of small nucleolar RNA (snoRNA) is closely associated with various diseases, including lung cancer. Furthermore, these diseases often involve multiple targets, making the redevelopment of traditional medicines highly promising. Accurate prediction of potential snoRNA therapeutic targets is essential for early disease intervention and the redevelopment of traditional medicines.

View Article and Find Full Text PDF

Variational graph autoencoder for reconstructed transcriptomic data associated with NLRP3 mediated pyroptosis in periodontitis.

Sci Rep

January 2025

Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.

The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!