Metal-nitrogen double bonds have been commonly reported for conventional metal complexes, but the coexistence of both transition metal-nitrogen and lanthanide-nitrogen double bonds bridged by nitrogen within one compound has never been reported. Herein, by encapsulating a ternary transition metal-lanthanide heteronuclear dimetallic nitride into a C fullerene cage, transition metal-nitrogen and lanthanide-nitrogen double bonds are costabilized simultaneously within the as-formed clusterfullerene TiCeN@C(12)-C, which is a representative heteronuclear dimetallic nitride clusterfullerene. Its molecular structure was unambiguously determined by single-crystal X-ray diffraction, revealing a slightly bent μ-bridged nitride cluster with short Ti-N (1.761 Å) and Ce-N (2.109 Å) bond lengths, which are comparable to the corresponding Ti=N and Ce=N double bonds of reported metal complexes and consistent with the theoretically predicted values, confirming their coexistence within TiCeN@C(12)-C. Density functional theory (DFT) calculations unveil three-center two-electron (3-2) bonds delocalized over the entire TiCeN cluster, which are responsible for costabilization of Ti=N and Ce=N double bonds. An electronic configuration of TiCeN@C is proposed featuring an intramolecular four-electron transfer, drastically different from the analogous actinide dimetallic nitride clusterfullerene (U)N@C and trimetallic nitride clusterfullerene (Sc)TiN@C , indicating the peculiarity of 4-fold negatively charged fullerene cage in stabilizing the heteronuclear dimetallic nitride cluster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503684 | PMC |
http://dx.doi.org/10.1021/prechem.3c00123 | DOI Listing |
Chemistry
December 2024
East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.
Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.
View Article and Find Full Text PDFGels
December 2024
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.
View Article and Find Full Text PDFSe Pu
January 2025
West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India.
Understanding RNA-protein interactions is crucial for uncovering the mechanisms of cellular processes and can provide insights into the basis of various diseases, paving the way for the development of targeted therapeutic interventions. Exposure to stress conditions, such as hypoxia, leads to a drop in intracellular pH, which, in turn, alters the ionization states of amino acid residues and RNA bases, affecting the charge distribution and electrostatic interactions between RNA and proteins. In addition, pH also perturbs the structure and dynamics of proteins via the disruption of H-bonds and ionic interactions.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
The complex pathology of Parkinson's disease (PD) requires comprehensive understanding and multi-pronged interventions for communication between nerve cells. Despite new developments in nanotechnology in the treatment of PD, in-depth exploration of their biological effects, in particular, the specific mechanisms of inflammation inhibition are lacking. Herein, using the stable cascade catalysis channel formed by polydopamine (PDA), imidazole groups, and Cu ions, a microgel system comprising functional monomers [superoxide dismutase (SOD) with double bonds, PDA, 2-methacryloyloxy ethyl phosphorylcholine (MPC), and Cu ions] is proposed for managing PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!