AI Article Synopsis

  • * The paper's aim is to create a specialized diffuse reflectance probe that can accurately assess the optical properties of these bilayer tissues in a subdiffusive context.
  • * Through Monte Carlo simulations, a well-designed probe was developed, achieving less than 20% estimation error in measuring the optical properties of skin layers, which is crucial for early detection of skin-related issues.

Article Abstract

Significance: Tissues like skin have a layered structure where each layer's optical properties vary significantly. However, traditional diffuse reflectance spectroscopy assumes a homogeneous medium, often leading to estimations that reflects the properties of neither layer. There's a clear need for probes that can precisely measure the optical properties of layered tissues.

Aim: This paper aims to design a diffuse reflectance probe capable of accurately estimating the optical properties of bilayer tissues in the subdiffusive regime.

Approach: Using Monte Carlo simulations, we evaluated key geometric factors-fiber placement, tilt angle, diameter, and numerical aperture-on optical property estimation, following the methodology in Part I. A robust design is proposed that balances accurate intrinsic optical property (IOP) calculations with practical experimental constraints.

Results: The designed probe, featuring eight illumination and eight detection fibers with varying spacings and tilt angles. The estimation error of the IOP calculation for bilayer phantoms is less than 20% for top layers with thicknesses between 0.2 and 1.0 mm.

Conclusion: Building on the approach from Part I and using a precise calibration, the probe effectively quantified and distinguished the IOPs of bilayer samples, particularly those relevant to early skin pathology detection and characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521147PMC
http://dx.doi.org/10.1117/1.JBO.29.10.105002DOI Listing

Publication Analysis

Top Keywords

optical properties
16
diffuse reflectance
12
properties bilayer
8
reflectance spectroscopy
8
optical property
8
optical
6
properties
5
probe
5
quantitative estimation
4
estimation optical
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).

View Article and Find Full Text PDF

Application of biomass carbon dots in food packaging.

Environ Sci Pollut Res Int

January 2025

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!