Emerging monolayer molecular crystals (MMCs) have become prosperous in recent decades due to their numerous advantages. First, downsizing the active layer thickness to monolayer in organic field-effect transistors (OFETs) is beneficial to elucidate the intrinsic charge-transport behavior. Next, the ultrathin conducting channel can reduce bulk injection resistance to extract mobility accurately. Then, direct exposure of the conducting channel can enhance the sensing performance. Finally, MMCs combine the merits of ultrathin thickness and high crystallization, which will improve the optoelectronic performance and realize complex device architectures for future advanced optoelectronic applications. In this Review, recent research progress in precise preparations and advanced applications of solution-processed MMCs are summarized. We present the current challenges related to MMCs with specific structures and desired performances, and an outlook regarding their application in next-generation integrated organic optoelectronics is provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503917 | PMC |
http://dx.doi.org/10.1021/prechem.3c00124 | DOI Listing |
J Am Chem Soc
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Self-assembled monolayers (SAM) as hole transport layers have been widely used in high-efficiency inverted perovskite solar cells (PSCs) exceeded 26 %. However, the poor coverage and non-uniform distribution on the substrate of SAM further restrict the improvement of device performance. Herein, we utilize the mixed SAM strategy via the MeO-2PACz along with perfluorotripropylamine (FC-3283) to improve the SAM coverage, aiming to accelerate the carrier transport, promote the perovskite growth, regulate the surface energy levels and suppress the nonradiative recombination.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania. Electronic address:
Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!