Skeletal muscle cells (myofibers) are elongated non-mitotic, multinucleated syncytia that have adapted a microtubule lattice. Microtubule-associated proteins (MAPs) play roles in regulating microtubule architecture. The most abundant MAP in skeletal muscle is MAP4. MAP4 consists of a ubiquitous MAP4 isoform (uMAP4), expressed in most tissues, and a striated-muscle-specific alternatively spliced isoform (mMAP4) that includes a 3,180-nucleotide exon (exon 8). To determine the role of mMAP4 in skeletal muscle, we generated mice that lack mMAP4 and express only uMAP4 due to genomic deletion of exon 8. We demonstrate that loss of mMAP4 leads to disorganized microtubule architecture and intrinsic loss of force generation. We show that mMAP4 exhibits enhanced association with microtubules compared to uMAP4 and that both the loss of mMAP4 and the concomitant gain of uMAP4 cause loss of muscle function. These results demonstrate the critical role for balanced expression of mMAP4 and uMAP4 for skeletal muscle homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513531PMC
http://dx.doi.org/10.1016/j.isci.2024.111104DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
alternatively spliced
8
muscle function
8
microtubule architecture
8
loss mmap4
8
umap4 loss
8
mmap4
7
muscle
6
skeletal
5
umap4
5

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!