Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521391PMC
http://dx.doi.org/10.1007/s00332-017-9438-6DOI Listing

Publication Analysis

Top Keywords

network connectivity
16
excitatory inhibitory
16
inhibitory cells
16
connectivity structure
12
excitatory
8
e-i networks
8
synchronous excitatory
8
excitatory bursting
8
type properties
8
excitatory cells
8

Similar Publications

Emotion processing is an integral part of everyone's life. The basic neural circuits involved in emotion perception are becoming clear, though the emotion's cognitive processing remains under investigation. Utilizing the stereo-electroencephalograph with high temporal-spatial resolution, this study aims to decipher the neural pathway responsible for discriminating low-arousal and high-arousal emotions.

View Article and Find Full Text PDF

Decoding ruminative reflection in healthy individuals: The role of triple network connectivity.

Int J Clin Health Psychol

October 2024

Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.

Ruminative reflection has been linked to enhanced executive control in processing internally represented emotional information, suggesting it may serve as an adaptive strategy for emotion regulation. Investigating the neural substrates of reflection can deepen our understanding of its adaptive properties. This study used network-based statistic (NBS)-Predict methodology to identify resting state functional connectivity (FC)-based predictors of ruminative reflection in a healthy sample.

View Article and Find Full Text PDF

Graph Neural Networks-Based Prediction of Drug Gene Interactions of RTK-VEGF4 Receptor Family in Periodontal Regeneration.

J Clin Exp Dent

December 2024

DDS. Titular Professor. Universidad de Antioquia U de A, Medellín, Colombia. Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia.

Background: The RTK-VEGF4 receptor family, which includes VEGFR-1, VEGFR-2, and VEGFR-3, plays a crucial role in tissue regeneration by promoting angiogenesis, the formation of new blood vessels, and recruiting stem cells and immune cells. Machine learning, particularly graph neural networks (GNNs), has shown high accuracy in predicting these interactions. This study aims to predict drug-gene interactions of the RTK-VEGF4 receptor family in periodontal regeneration using graph neural networks.

View Article and Find Full Text PDF

Seizure network characterization by functional connectivity mapping and manipulation.

Neurophotonics

January 2025

Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.

Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.

View Article and Find Full Text PDF

Brain-inspired wiring economics for artificial neural networks.

PNAS Nexus

January 2025

School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

Wiring patterns of brain networks embody a trade-off between information transmission, geometric constraints, and metabolic cost, all of which must be balanced to meet functional needs. Geometry and wiring economy are crucial in the development of brains, but their impact on artificial neural networks (ANNs) remains little understood. Here, we adopt a wiring cost-controlled training framework that simultaneously optimizes wiring efficiency and task performance during structural evolution of sparse ANNs whose nodes are located at arbitrary but fixed positions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!