Chemokines are small proteins guiding cell migration with crucial role during immune responses. Their actions are mediated by 7-helix trans-membrane Gα protein-coupled receptors and ended by chemokine-receptor complex downregulation. Beyond its physiological role, ligand-induced receptor endocytosis can be exploited to vehiculate drugs and genetic materials within specific cells. Indeed, peptide-modified drugs and chemokine-decorated nanocarriers can target cell subpopulations significantly increasing cargo internalization. Carrier functionalization with small peptides or small-molecule-antagonists have been developed by different groups and proved their efficacy . One major limitation regards their restricted number of targeted receptors, although involved in diverse types of cancer and inflammatory diseases. Our group implemented nanoparticle decoration using whole chemokines, which in my opinion offer a versatile platform for precise drug delivery. The rationale relies on the broad and distinctive cellular expression of all chemokine receptors covering the different tissues, theoretically allowing chemokine-decorated particle delivery to any chosen cell subset. Although promising, our approach is still in its infancy and the experiments performed only so far. This manuscript briefly describes the established nanotechnologies for chemokine receptor-mediated delivery and, in greater details, our chemokine-decorated nanoparticles. Positive and negative aspects of the different approaches are also discussed, giving my opinion on why future nano-formulations could benefit from these chemo-attractant immune mediators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.fbl2910350 | DOI Listing |
ACS Cent Sci
January 2025
Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.
View Article and Find Full Text PDFMatrix Biol
February 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address:
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression.
View Article and Find Full Text PDFTissue Barriers
December 2024
Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.
This review investigates the pathogenic processes through which crosses the blood-brain barrier (BBB) to cause meningitis, with a focus on the interaction with host receptors in the central nervous system (CNS). a primary cause of bacterial meningitis, utilizes unique receptor-mediated pathways to infiltrate the BBB. The bacterial interaction with the platelet-activating factor receptor (PAFR) and the polymeric immunoglobulin receptor (pIgR) is looked at in this study.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2024
Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
Chemokines are small proteins guiding cell migration with crucial role during immune responses. Their actions are mediated by 7-helix trans-membrane Gα protein-coupled receptors and ended by chemokine-receptor complex downregulation. Beyond its physiological role, ligand-induced receptor endocytosis can be exploited to vehiculate drugs and genetic materials within specific cells.
View Article and Find Full Text PDFBr J Pharmacol
October 2024
Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
Background And Purpose: Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM.
Experimental Approach: FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!