The immune system and cancer cells interact intricately during the growth of tumors, and the dynamic interplay between immune activation and suppression greatly influences the cancer outcome. Natural killer cells (NK), cytotoxic T lymphocytes (CTLs) and Dendritic cells (DC), employ diverse mechanisms, to combat cancer. However, the challenges posed by factors such as chronic inflammation and the immunosuppressive tumor microenvironment (TME) often hinder immune cells' ability to detect and eliminate tumors accurately. Immunotherapy offers a promising approach, reprogramming the immune system to target and eliminating cancer cells while minimizing side effects, enhancing immune memory, and lowering the risk of metastasis and relapse compared to traditional treatments like radiation and surgery. Nanotechnology presents a potential solution by enabling safer, more efficient drug delivery through nanoparticles. These nanoengineered drugs can be tailored for controlled activation and release. Improving TME characters holds potential for enhancing personalized immunotherapy and addressing T cell availability issues within tumor sites, particularly when combined with existing therapies. This review discusses TMEs and the strategies to overcome immunosuppression in TME, and various immune cell-based strategies to improve antitumor response. It also focuses on the strategies for constructing microenvironment responsive nanoplatforms based upon the factors present at higher levels in TME like acidic pH, hypoxia facilitated by poor oxygen supply, higher expression of certain enzymes, and other factors such light, ultrasound and magnetic field. Combination immune therapies combined with immunotherapy include photodynamic therapy, photothermal therapy, chemotherapy, gene therapy and radiotherapy, revealing a high level of anticancer activity in comparison to a single therapy, enhancing immunogenicity, promoting therapeutic efficacy, and lowering metastasis. In conclusion, cancer immunotherapy is a potential technique to combat cancer cells and boost the immune system, hindering their growth and recurrence. In order to prevent cancer, it helps the immune system target cancer cells selectively and strengthens its long-term memory. Clinical trials are extending the application of immunotherapy and identifying strategies to improve the immune system tumor-fighting capabilities. Immunotherapy has enormous promise and gives hope for more successful cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2910349DOI Listing

Publication Analysis

Top Keywords

immune system
20
cancer cells
16
cancer
10
immune
10
cancer treatment
8
combat cancer
8
system target
8
strategies improve
8
immunotherapy
7
cells
6

Similar Publications

Advances and applications of genome-edited animal models for severe combined immunodeficiency.

Zool Res

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:

Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .

View Article and Find Full Text PDF

Objective: To assess 30- and 90-day postoperative complication rates in patients who underwent robot-assisted radical cystectomy (RARC) after receiving novel immunotherapy-based neoadjuvant treatment.

Methods: A bi-centre analysis was conducted in patients who underwent RARC with intracorporeal urinary diversion and who received an immunotherapy-based neoadjuvant regimen between 2017 and 2023. Complications were classified using the Clavien-Dindo system.

View Article and Find Full Text PDF

Pseudomonal Vasculopathy of the Central Nervous System in a 2-Year-Old Female With an IRAK4-Related Immunodeficiency.

Fetal Pediatr Pathol

January 2025

Lauren V. Ackerman Laboratory of Surgical Pathology, Department of Pathology and Immunology, St. Louis, MO, USA.

, a gram-negative bacillus, has varied clinical manifestations with septicemia as the most lethal. PA infection is usually regarded as opportunistic and often nosocomial. We present a case of a "healthy" pediatric patient presenting with upper respiratory symptoms who rapidly deteriorated.

View Article and Find Full Text PDF

Identification of an immunological signature of long COVID syndrome.

Front Immunol

January 2025

Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy.

Introduction: Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!