Metachromatic leukodystrophy (MLD) is a rare neurodegenerative lysosomal storage disease resulting from bi-allelic pathogenic variants in the ARSA gene. MLD is distinguished clinically based on the age of onset into late-infantile, juvenile, and adult. The late-infantile type is the most severe phenotype presenting with hypotonia, weakness, gait abnormalities, which progresses to mental and physical decline leading to early death. MLD is considered to be pan-ethnic and no founder variants have previously been described in the Ashkenazi Jewish population. We identified three unrelated individuals of Ashkenazi Jewish descent with homozygosity or compound heterozygosity for the c.178C>T (p.Arg60Trp) variant in the ARSA gene, with a phenotype consistent with late-infantile MLD. The carrier frequency was calculated among 93,293 individuals of Ashkenazi Jewish descent through the Dor Yeshorim screening program and found to have a carrier frequency on 1 in 1554 or 0.06%, which may be representative of a founder variant. Molecular protein modeling showed that the variant affects regional folding. Late-infantile MLD should be considered when the c.178C>T (p.Arg60Trp) variant in the ARSA gene is present in either the homozygous or the compound heterozygous states.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.63919DOI Listing

Publication Analysis

Top Keywords

ashkenazi jewish
16
individuals ashkenazi
12
arsa gene
12
metachromatic leukodystrophy
8
mld considered
8
jewish descent
8
c178c>t parg60trp
8
parg60trp variant
8
variant arsa
8
late-infantile mld
8

Similar Publications

Evaluating patients with adult-onset gait instability can pose diagnostic challenges. In this case, a 62-year-old Ashkenazi Jewish woman with a history of surgically corrected hammer toes presented with chronic progressive lower extremity weakness, sensory impairment, and gait instability. Subsequently, the patient developed urinary urgency and mild cognitive difficulties.

View Article and Find Full Text PDF

Parkinson's disease (PD) is considered to be the second most prominent neurodegenerative disease and has a global prevalence. Glucocerebrosidase () gene mutations represent a significant hereditary risk factor for the development of PD and have a profound impact on the motor and cognitive progression of the disease. The aim of this review is to summarize the literature data on the prevalence, type, and peculiarities of mutations in populations of different ethnic backgrounds.

View Article and Find Full Text PDF

Background: The NHS Jewish BRCA Testing Programme is offering germline and genetic testing to people with ≥1 Jewish grandparent. Who have an increased likelihood of having an Ashkenazi Jewish (AJ) founder germline pathogenic variant (gPV) compared with the general population.Testing is offered via a self-referral, home-based saliva sampling pathway, supported by a genetic counsellor telephone helpline.

View Article and Find Full Text PDF

Somatic mosaicism is an important cause of disease, but mosaic and somatic variants are often challenging to detect because they exist in only a fraction of cells. To address the need for benchmarking subclonal variants in normal cell populations, we developed a benchmark containing mosaic variants in the Genome in a Bottle Consortium (GIAB) HG002 reference material DNA from a large batch of a normal lymphoblastoid cell line. First, we used a somatic variant caller with high coverage (300x) Illumina whole genome sequencing data from the Ashkenazi Jewish trio to detect variants in HG002 not detected in at least 5% of cells from the combined parental data.

View Article and Find Full Text PDF

Purpose: Carrier screening identifies reproductive risk for autosomal recessive and X-linked genetic conditions. Currently, some medical society guidelines continue to recommend ethnicity-based carrier screening for conditions associated with Ashkenazi Jewish (AJ) ancestry. We assessed the utility and limitations of these guidelines in a large, ethnically and genetically diverse cohort of genotyped individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!