The Critical Roles of Phosphatidylethanolamine-Binding Proteins in Legumes.

Plant Cell Environ

Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.

Published: October 2024

Legumes, characterized by their ability to form symbiotic relationships with nitrogen-fixing bacteria, play crucial roles in agriculture, ecology and human nutrition. Phosphatidylethanolamine-binding proteins (PEBPs) are the key genetic players that contribute to the diverse biological functions of legumes. In this review, we summarize the current understanding of important roles of PEBP genes in legumes, including flowering, inflorescence architecture, seed development and nodulation. We also delve into PEBP regulatory mechanisms and effects on plant growth, development, and adaptation to the environment. Furthermore, we highlight their potential biotechnological applications for crop improvement and promoting sustainable agriculture. This review emphasizes the multifaceted roles of PEBP genes, shedding light on their significance in legume biology and their potential for sustainable productive farming.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15255DOI Listing

Publication Analysis

Top Keywords

phosphatidylethanolamine-binding proteins
8
roles pebp
8
pebp genes
8
critical roles
4
roles phosphatidylethanolamine-binding
4
legumes
4
proteins legumes
4
legumes legumes
4
legumes characterized
4
characterized ability
4

Similar Publications

From Ca dysregulation to heart failure: β-adrenoceptor activation by RKIP postpones molecular damages and subsequent cardiac dysfunction in mice carrying mutant PLN by correction of aberrant Ca-handling.

Pharmacol Res

January 2025

Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany. Electronic address:

Article Synopsis
  • Impaired calcium (Ca) handling in heart cells is a key feature of heart failure (HF), leading to issues like weakened heart contractions and irregular heartbeats.
  • The study used transgenic mice with a mutation affecting a calcium regulator (phospholamban) to understand how defects in calcium cycling contribute to HF, noting that these mice experience severe and fast-progressing heart failure.
  • Early treatment aimed at correcting calcium cycling using Raf kinase inhibitor protein (RKIP) was found to delay heart cell damage and improve overall health of the mice, indicating that addressing Ca dynamics early on could be crucial for preventing further complications in heart failure.
View Article and Find Full Text PDF

Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how florigen and antiflorigen genes within the PEBP family influence flowering in angiosperms, especially in eelgrass, which is vital for its survival against climate change.
  • - Researchers identified thirteen PEBP genes in eelgrass and found that four of them affect flowering when overexpressed; they analyzed gene expression using RT-PCR across different eelgrass populations and growth stages.
  • - Results indicate that certain genes promote flowering while others inhibit it, with some genes expressed variably in different parts of the plant, suggesting a complex role in flowering and shoot architecture in eelgrass.
View Article and Find Full Text PDF

Characterization of pecan PEBP family genes and the potential regulation role of CiPEBP-like1 in fatty acid synthesis.

Plant Sci

February 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China. Electronic address:

Phosphatidyl ethanolamine-binding protein (PEBP) plays important roles in plant growth and development. However, few studies have investigated the PEBP gene family in pecan (Carya illinoinensis), particularly the function of the PEBP-like subfamily. In this study, we identified 12 PEBP genes from the pecan genome and classified them into four subfamilies: MFT-like, FT-like, TFL1-like and PEBP-like.

View Article and Find Full Text PDF

Mung bean (Vigna radiata L.), a widely cultivated legume, belongs to the Fabaceae family's Papilionoideae subfamily. Although Phosphatidylethanolamine-binding protein (PEBP) genes have been identified in several plant species, their presence and function in mung bean remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!