Legumes, characterized by their ability to form symbiotic relationships with nitrogen-fixing bacteria, play crucial roles in agriculture, ecology and human nutrition. Phosphatidylethanolamine-binding proteins (PEBPs) are the key genetic players that contribute to the diverse biological functions of legumes. In this review, we summarize the current understanding of important roles of PEBP genes in legumes, including flowering, inflorescence architecture, seed development and nodulation. We also delve into PEBP regulatory mechanisms and effects on plant growth, development, and adaptation to the environment. Furthermore, we highlight their potential biotechnological applications for crop improvement and promoting sustainable agriculture. This review emphasizes the multifaceted roles of PEBP genes, shedding light on their significance in legume biology and their potential for sustainable productive farming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15255 | DOI Listing |
Pharmacol Res
January 2025
Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany. Electronic address:
BMC Plant Biol
December 2024
College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China.
Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biology, University of Washington, Seattle, WA USA 98195.
Plant Sci
February 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China. Electronic address:
Phosphatidyl ethanolamine-binding protein (PEBP) plays important roles in plant growth and development. However, few studies have investigated the PEBP gene family in pecan (Carya illinoinensis), particularly the function of the PEBP-like subfamily. In this study, we identified 12 PEBP genes from the pecan genome and classified them into four subfamilies: MFT-like, FT-like, TFL1-like and PEBP-like.
View Article and Find Full Text PDFSci Rep
November 2024
Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China.
Mung bean (Vigna radiata L.), a widely cultivated legume, belongs to the Fabaceae family's Papilionoideae subfamily. Although Phosphatidylethanolamine-binding protein (PEBP) genes have been identified in several plant species, their presence and function in mung bean remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!