β-Fluoromethyl (CHF, CHF, and CF)-substituted chiral ketones are essential moieties and are vital building blocks in pharmaceutical and agrochemistry. However, general and convenient methods for enantio-diverse access to diverse β-fluoromethylated ketones are lacking, hindering the further development of these functional moieties. In this study, we developed an ene-reductase-based photobiocatalytic platform for efficient synthesis of enantio-divergent β-fluoromethylated chiral ketones. Our method highlights substrate-type diversity, excellent enantioselectivity, enzymatic enantio-divergent synthesis, as well as a dicyanopyrazine (DPZ)-type photosensitizer for biocompatible olefin / isomerization in enzymatic stereoconvergent olefin asymmetric reduction, thereby providing a general photobiocatalytic solution to diverse β-fluoromethylated chiral ketones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c10441 | DOI Listing |
Int J Mol Sci
December 2024
Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain.
Human lactate dehydrogenase A (LDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, LDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet's syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its LDHA inhibitory activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.
View Article and Find Full Text PDFChirality
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids.
View Article and Find Full Text PDFChemistry
January 2025
Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium.
We introduce mechanochemical deracemization (MCDR) as a novel strategy for obtaining enantiopure compounds. This study demonstrates the successful transposition of six archetypical deracemization reactions from a solvent-based to a solvent-minimized ball milling environment. The scope includes a ketone, isoindolinones, imines, an ester, and an inorganic compound, all of which deracemized successfully.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.
Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!