AI Article Synopsis

  • Data integration from multiple studies boosts statistical power to investigate links between environmental exposure mixtures and health outcomes, while addressing variations across different studies.
  • The hierarchical Bayesian Weighted Quantile Sum (HBWQS) method aggregates data from various cohorts to identify harmful exposures and their specific impacts on health outcomes, outperforming the traditional BWQS method.
  • The findings indicate that HBWQS can guide regulations and interventions related to environmental exposures by effectively combining cohort data and adjusting for differences between them.

Article Abstract

Data integration of multiple studies can provide enhanced exposure contrast and statistical power to examine associations between environmental exposure mixtures and health outcomes. Extant research has combined populations and identified an overall mixture-outcome association, without accounting for differences across studies. We extended the Bayesian Weighted Quantile Sum (BWQS) regression to a hierarchical framework to analyze mixtures across cohorts. The hierarchical BWQS (HBWQS) approach aggregates sample size of multiple cohorts to calculate an overall mixture index, thereby identifying the most harmful exposure(s) across cohorts; and provides cohort-specific associations between the overall mixture index and the outcome. We showed results from 10 simulated scenarios including four mixture components in three, eight, and ten populations, and two real-case examples on the association between prenatal metal mixture exposure-comprising arsenic, cadmium, and lead-and both gestational age and epigenetic-derived gestational age acceleration metrics. Simulated scenarios showed good empirical coverage and little bias for all HBWQS-estimated parameters. The Watanabe-Akaike information criterion showed a better average performance for the HBWQS regression than the BWQS across scenarios. HBWQS results incorporating cohorts within the national Environmental influences on Child Health Outcomes (ECHO) program from three different sites showed that the environmental mixture was negatively associated with gestational age in a single site. The HBWQS approach facilitates the combination of multiple cohorts and accounts for individual cohort differences in mixture analyses. HBWQS findings can be used to develop regulations, policies, and interventions regarding multiple co-occurring environmental exposures and it will maximize the use of extant publicly available data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bimj.202300270DOI Listing

Publication Analysis

Top Keywords

gestational age
20
data integration
8
age acceleration
8
acceleration metrics
8
health outcomes
8
hbwqs approach
8
multiple cohorts
8
simulated scenarios
8
mixture
6
gestational
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!