Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates.

Korean J Radiol

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.

Published: November 2024

Generative artificial intelligence (AI) has been applied to images for image quality enhancement, domain transfer, and augmentation of training data for AI modeling in various medical fields. Image-generative AI can produce large amounts of unannotated imaging data, which facilitates multiple downstream deep-learning tasks. However, their evaluation methods and clinical utility have not been thoroughly reviewed. This article summarizes commonly used generative adversarial networks and diffusion models. In addition, it summarizes their utility in clinical tasks in the field of radiology, such as direct image utilization, lesion detection, segmentation, and diagnosis. This article aims to guide readers regarding radiology practice and research using image-generative AI by 1) reviewing basic theories of image-generative AI, 2) discussing the methods used to evaluate the generated images, 3) outlining the clinical and research utility of generated images, and 4) discussing the issue of hallucinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524689PMC
http://dx.doi.org/10.3348/kjr.2024.0392DOI Listing

Publication Analysis

Top Keywords

generative artificial
8
artificial intelligence
8
clinical utility
8
generated images
8
image-based generative
4
intelligence radiology
4
radiology comprehensive
4
comprehensive updates
4
updates generative
4
intelligence applied
4

Similar Publications

Pharmaceutical medicine professionals have to face many ethical problems during the entire life span of new medicines extending from animal studies to broad clinical practice. The primary aim of the general ethical principles governing research conducted in humans is to diminish the physical and psychological burdens of the participants in human drug studies but overlooks many additional social and ethical problems faced by medicine developers. These arise mainly at the interface connecting the profit-oriented pharmaceutical industry and the healthcare-centered medical profession cooperating in medicines development.

View Article and Find Full Text PDF

Purpose: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery.

Methods: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws.

Results: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models.

View Article and Find Full Text PDF

Use of AI in Cardiac CT and MRI: A Scientific Statement from the ESCR, EuSoMII, NASCI, SCCT, SCMR, SIIM, and RSNA.

Radiology

January 2025

From the Department of Radiology, University of Washington, UW Medical Center-Montlake, Seattle, Wash (D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC), University of Washington, Seattle, Wash (D.M.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (M.v.A.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (M.H.); Department of Radiology, Mayo Clinic, Rochester, Minn (T.L., E.E.W.); Departments of Cardiology and Radiology, Royal Brompton Hospital, London, United Kingdom (E.D.N.); School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom (E.D.N.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University of Cagliari, Cagliari, Italy (L.S.); Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 Postbus 30 001, 9700 RB Groningen, the Netherlands (R.V.); Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.H.).

Artificial intelligence (AI) offers promising solutions for many steps of the cardiac imaging workflow, from patient and test selection through image acquisition, reconstruction, and interpretation, extending to prognostication and reporting. Despite the development of many cardiac imaging AI algorithms, AI tools are at various stages of development and face challenges for clinical implementation. This scientific statement, endorsed by several societies in the field, provides an overview of the current landscape and challenges of AI applications in cardiac CT and MRI.

View Article and Find Full Text PDF

Emerging trends in managed care pharmacy: A mixed-method study.

J Manag Care Spec Pharm

January 2025

Academy of Managed Care Pharmacy Foundation, Alexandria, VA.

Background: Over the past 5 years, managed care pharmacy has been shaped by a global pandemic, advancements in generative artificial intelligence (AI), Medicare drug price negotiation policies, and significant therapeutic developments. Collective intelligence methods can be used to anticipate future developments in practice to help organizations plan and develop new strategies around those changes.

Objective: To identify emerging trends in managed care pharmacy.

View Article and Find Full Text PDF

In the twilight zone: between AI and nursing.

Arts Health

January 2025

"SECURE Team For You" (SweEt spot ConsUlting REsearch Team for the Next Generation, You), Center for Econometric Optimization in the Nursing Workforce, Seoul, Republic of Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!