Background: The importance of gut microbes in mediating the benefits of lifestyle intervention is increasingly recognized. However, compared to the bacterial microbiome, the role of intestinal fungi in exercise remains elusive. With our established randomized controlled trial of exercise intervention in Chinese males with prediabetes ( = 39, ClinicalTrials.gov:NCT03240978), we investigated the dynamics of human gut mycobiome and further interrogated their associations with exercise-elicited outcomes using multi-omics approaches.
Methods: Clinical variations and biological samples were collected before and after training. Fecal fungal composition was analyzed using the internal transcribed spacer 2 (ITS2) sequencing and integrated with paired shotgun metagenomics, untargeted metabolomics, and Olink proteomics.
Results: Twelve weeks of exercise training profoundly promoted fungal ecological diversity and intrakingdom connection. We further identified exercise-responsive genera with potential metabolic benefits, including Verticillium, Sarocladium, and Ceratocystis. Using multi-omics approaches, we elucidated comprehensive associations between changes in gut mycobiome and exercise-shaped metabolic phenotypes, bacterial microbiome, and circulating metabolomics and proteomics profiles. Furthermore, a machine-learning algorithm built using baseline microbial signatures and clinical characteristics predicted exercise responsiveness in improvements of insulin sensitivity, with an area under the receiver operating characteristic (AUROC) of 0.91 (95% CI: 0.85-0.97) in the discovery cohort and of 0.79 (95% CI: 0.74-0.86) in the independent validation cohort ( = 30).
Conclusions: Our findings suggest that intense exercise training significantly remodels the human fungal microbiome composition. Changes in gut fungal composition are associated with the metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in tailoring personalized training for diabetes prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533799 | PMC |
http://dx.doi.org/10.1080/19490976.2024.2416928 | DOI Listing |
Annu Rev Pathol
January 2025
Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.
Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.
Brain Behav Immun
January 2025
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Microbial Systems Initiative, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Personalized Nutrition Initiative, University of Illinois at Urbana-Champaign, Urbana, IL, USA. Electronic address:
Mol Cancer
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis.
View Article and Find Full Text PDFCell Host Microbe
January 2025
State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:
In this issue of Cell Host & Microbe, Wu et al. identified enriched gut Aspergillus tubingensis in patients with polycystic ovary syndrome (PCOS). In mice, this fungus induced a PCOS-like phenotype by inhibiting interleukin (IL)-22 secretion from ILC3s via the AT-C1-AhR axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!