Background: For patients with breast cancer undergoing neoadjuvant chemotherapy (NACT), most of the existing prediction models of pathologic complete response (pCR) using clinicopathological features were based on standard statistical models like logistic regression, while models based on machine learning mostly utilized imaging data and/or gene expression data. This study aims to develop a robust and accessible machine learning model to predict pCR using clinicopathological features alone, which can be used to facilitate clinical decision-making in diverse settings.
Methods: The model was developed and validated within the National Cancer Data Base (NCDB, 2018-2020) and an external cohort at the University of Chicago (2010-2020). We compared logistic regression and machine learning models, and examined whether incorporating quantitative clinicopathological features improved model performance. Decision curve analysis was conducted to assess the model's clinical utility.
Results: We identified 56,209 NCDB patients receiving NACT (pCR rate: 34.0%). The machine learning model incorporating quantitative clinicopathological features showed the best discrimination performance among all the fitted models [area under the receiver operating characteristic curve (AUC): 0.785, 95% confidence interval (CI): 0.778-0.792], along with outstanding calibration performance. The model performed best among patients with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2-) breast cancer (AUC: 0.817, 95% CI: 0.802-0.832); and by adopting a 7% prediction threshold, the model achieved 90.5% sensitivity and 48.8% specificity, with decision curve analysis finding a 23.1% net reduction in chemotherapy use. In the external testing set of 584 patients (pCR rate: 33.4%), the model maintained robust performance both overall (AUC: 0.711, 95% CI: 0.668-0.753) and in the HR+/HER2- subgroup (AUC: 0.810, 95% CI: 0.742-0.878).
Conclusions: The study developed a machine learning model ( https://huolab.cri.uchicago.edu/sample-apps/pcrmodel ) to predict pCR in breast cancer patients undergoing NACT that demonstrated robust discrimination and calibration performance. The model performed particularly well among patients with HR+/HER2- breast cancer, having the potential to identify patients who are less likely to achieve pCR and can consider alternative treatment strategies over chemotherapy. The model can also serve as a robust baseline model that can be integrated with smaller datasets containing additional granular features in future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520773 | PMC |
http://dx.doi.org/10.1186/s13058-024-01905-7 | DOI Listing |
Sci Rep
December 2024
The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!