AI Article Synopsis

  • The study examines how population connectivity and genetic structure impact the resilience of the cold-water coral species Desmophyllum pertusum in the face of human activities.
  • By analyzing DNA from individuals across nine sites, the research found significant genetic differentiation between populations in the southeastern U.S. and those in New England and the Gulf of Mexico.
  • The results suggest high connectivity within the southeastern sites, while areas like Norfolk Canyon and the Gulf of Mexico show low differentiation and potential gene flow, emphasizing the need for larger sample sizes to better understand these patterns.

Article Abstract

Objective: The connectivity and genetic structuring of populations throughout a region influence a species' resilience and probability of recovery from anthropogenic impacts. By gaining a comprehensive understanding of population connectivity, more effective management can be prioritized. To assess the connectivity and population genetic structure of a common cold-water coral species, Desmophyllum pertusum (Lophelia pertusa), we performed Restriction-site Associated DNA Sequencing (RADseq) on individuals from nine sites ranging from submarine canyons off New England to the southeastern coast of the United States (SEUS) and the Gulf of Mexico (GOM). Fifty-seven individuals and 3,180 single-nucleotide polymorphisms (SNPs) were used to assess genetic differentiation.

Results: High connectivity exists among populations along the SEUS, yet these populations were differentiated from those to the north off New England and in Norfolk Canyon along the North Atlantic coast of the United States, as well as those in the GOM. Interestingly, Norfolk Canyon, located just north of North Carolina, and GOM populations exhibited low levels of genetic differentiation, corroborating previous microsatellite analyses and signifying gene flow between these populations. Increasing sample sizes from existing populations and including additional sampling sites over a larger geographic range would help define potential source populations and reveal fine-scale connectivity patterns among D. pertusum populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520793PMC
http://dx.doi.org/10.1186/s13104-024-06977-4DOI Listing

Publication Analysis

Top Keywords

united states
12
desmophyllum pertusum
8
populations
8
coast united
8
norfolk canyon
8
connectivity
5
population structure
4
structure desmophyllum
4
pertusum united
4
states eastern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!