A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis and control of grid-interactive PV-fed BLDC water pumping system with optimized MPPT for DC-DC converter. | LitMetric

In this study, a novel water pumping module fed by grid interactive Photo-Voltaic with a bidirectional Power Flow Control was proposed. In addition to improving the pumping system's reliability, a water pump is powered by a brushless DC motor drive. This method enables the pump to work at its maximum capacity for the entirety of that day, regardless of the weather. The entire system becomes more reliable as a result of the motor's increased use of photovoltaic (PV) generated power for pumping applications. Maximum Power Point Tracking (MPPT) controller incorporating Machine Learning algorithm drives bridgeless greater static gain DCDC converter to achieve higher power generation point and increment PV efficiency. The PV array's operation would be managed using the ML back propagation technology to capture the most electricity under any ecological circumstance. A BLDC motor is fed by a Voltage Source Inverter (VSI) that includes a DC bus controlled in both directions by a unit vector template (UVT) approach incorporated in a single-phase voltage source converter (VSC). Additionally, utilizing a PI controller to manage the DC capacitor voltage in the UVT controller at a particular level is not appropriate for the increased PQ capabilities. However, due to tuning problems with the current controller, this controller is unpopular. The aforementioned problems are resolved by employing a unique intelligent-based fuzzy logic controller that achieves good performance features. In this technique, the function of a PV array at its Maximum Power Point (MPP), as well as power quality enhancements and a decrease in Total Harmonic Distortion (THD) of the grid are accomplished. The proposed PI controller attains a significant voltage THD of 3.736. The PI controller, on the other hand, managed to achieve a load voltage THD of 2.629%. The ANFIS method, whose value is 1.739%, is discovered to have a lower THD than all remotes with improved features, it lessens abrupt swings while maintaining steady DC-link voltage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522376PMC
http://dx.doi.org/10.1038/s41598-024-77822-8DOI Listing

Publication Analysis

Top Keywords

water pumping
8
maximum power
8
power point
8
controller
8
voltage source
8
voltage thd
8
power
6
voltage
6
analysis control
4
control grid-interactive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!