Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structural imperfections can be a promising testbed to engineer the symmetries and topological states of solid-state platforms. Here, we present direct evidence of hierarchical transitions of zero- (0D) and one-dimensional (1D) topological states in symmetry-enforced grain boundaries (GB) in 1T'-MoTe. Using a scanning tunneling microscope tip press-and-pulse procedure, we construct two distinct types of GBs, which are differentiated by the underlying symmorphic and nonsymmorphic symmetries. The GBs with the nonsymmorphic rotation symmetry harbor first-order topological edge states protected by a nonsymmorphic band degeneracy. On the other hand, the edge state of the symmorphic GBs attains a band gap. More interestingly, the gapped edge state realizes a hierarchical topological phase, evidenced by the additional 0D boundary states at the GB ends. We anticipate our experiments will pioneer the material platform for the hierarchical realization of first-order and higher-order topology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522315 | PMC |
http://dx.doi.org/10.1038/s41467-024-53315-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!