Morphological, biochemical and genotoxic effects of non-ionizing radiation at 1800 MHz and 2400 MHz frequencies in Allium cepa L.

Environ Sci Pollut Res Int

Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.

Published: November 2024

AI Article Synopsis

  • The study examines the effects of electromagnetic radiation (EMR) from common devices on Allium cepa L. (onion plants) at frequencies of 1800 MHz and 2400 MHz, across varying exposure durations.
  • Prolonged exposure to EMR led to reduced root length, fresh weight, and dry weight, along with decreased protein content and increased activity of antioxidative enzymes during higher exposure times.
  • The research also indicated that long-term EMR exposure caused oxidative stress and chromosomal abnormalities in the root tip cells, highlighting potential genotoxic effects on the plants.

Article Abstract

The frequent use of electronic devices in daily lives, predominantly reliant on non-ionizing radiation, has increased the prevalence of electromagnetic radiation (EMR) in natural environment. In light of this, effects of EMR at frequencies of 1800 MHz and 2400 MHz characterized by a power of 10.0 dBm (0.01 W), across varying exposure durations of 1 h/day, 2 h/day, 4 h/day, 6 h/day, and 8 h/day for 7 days, in Allium cepa L. were studied. The effects of the treatment on the morphological features (root length, fresh weight, and dry weight of roots) and biochemical characteristics (protein content and antioxidative enzymes, namely, ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), guaiacol peroxidase (POD), catalase (CAT), and dehydroascorbate (DHAR)) were studied in roots and bulbs of Allium cepa L. Further genotoxicity for different exposure periods at both frequencies was also conducted. Prolonged exposure to electromagnetic radiation (EMR) at both frequencies was found to reduce root length, fresh weight, and dry weight of plant. Furthermore, significant effects were observed on protein content, indicating a reduction with prolonged exposure duration. Investigation into the activities of antioxidative enzymes such as APX, GR, GST, DHAR, CAT, SOD, and POD at a frequency of 1800 MHz and 2400 MHz in roots and bulbs demonstrated a significant enhancement in enzyme activity during 6 h/day and 8 h/day exposure periods. Additional investigation during genotoxicity studies demonstrated the induction of chromosomal aberrations in the root tip cells of the Allium cepa L. plant test system. The current study revealed the initiation of oxidative stress and genotoxicity resulting from long-term exposure to electromagnetic radiation in the studied plant test systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35414-zDOI Listing

Publication Analysis

Top Keywords

allium cepa
16
1800 mhz 2400 mhz
12
electromagnetic radiation
12
non-ionizing radiation
8
radiation emr
8
emr frequencies
8
6 h/day 8 h/day
8
root length
8
length fresh
8
fresh weight
8

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Phytotoxicity Study of (Amino)imidazo[1,2-]pyridine Derivatives Toward the Control of , , and Weeds.

J Agric Food Chem

December 2024

Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970 Brasília, DF, Brazil.

In this work, several imidazo[1,2-]pyridines were synthesized through the Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR), and their phytotoxicity was evaluated by the influence on the growth of wheat coleoptiles and three important agricultural seeds (, , and ) at test concentrations of 1000, 300, 100, 30, and 10 μM. A structure-activity relationship was established, showing the importance of halogen groups at the position of the attached aromatic ring and the presence of a cyclohexylamine group for greater activity. Post-modification of some GBB-3CR adducts was carried out, leading to imidazo[1,2-]pyridine-tetrazole hybrids, which were also evaluated in these bioassays.

View Article and Find Full Text PDF

Onion is the most important and widely cultivated cash-generating crop in Ethiopia. Onion production is limited by several factors, and its production and productivity are low. Among the many contributing factors, a lack of improved cultivars and improper plant density are the major limiting factors.

View Article and Find Full Text PDF

Allium chromosome evolution and DNA sequence localization.

Mol Biol Rep

December 2024

Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, LE1 7RH, UK.

Background: Molecular cytogenetics, utilizing DNA probes, serves as a critical tool for mapping genes to the physical structures of chromosomes.

Methods: In this study, we examined three Allium species: A. cepa L.

View Article and Find Full Text PDF

Onion ( L.) is an important seasoning vegetable worldwide. It belongs to the Allium genus, which produces distinctive flavor compounds, allicin/isoallicin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!