Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: Accurate prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is crucial for guiding treatment. This study evaluates and compares the performance of clinicoradiologic, traditional radiomics, deep-learning radiomics, feature fusion, and decision fusion models based on multi-region MR habitat imaging using six machine-learning classifiers.
Materials And Methods: We retrospectively included 300 HCC patients. The intratumoral and peritumoral regions were segmented into distinct habitats, from which radiomics and deep-learning features were extracted using arterial phase MR images. To reduce feature dimensionality, we applied intra-class correlation coefficient (ICC) analysis, Pearson correlation coefficient (PCC) filtering, and recursive feature elimination (RFE). Based on the selected optimal features, prediction models were constructed using decision tree (DT), K-nearest neighbors (KNN), logistic regression (LR), random forest (RF), support vector machine (SVM), and XGBoost (XGB) classifiers. Additionally, fusion models were developed utilizing both feature fusion and decision fusion strategies. The performance of these models was validated using the area under the receiver operating characteristic curve (ROC AUC), calibration curves, and decision curve analysis.
Results: The decision fusion model (VOI-Peri10-1) using LR and integrating clinicoradiologic, radiomics, and deep-learning features achieved the highest AUC of 0.808 (95% confidence interval [CI]: 0.807-0.912) in the test cohort, with good calibration (Hosmer-Lemeshow test, P > 0.050) and clinical net benefit.
Conclusion: The LR-based decision fusion model integrating clinicoradiologic, radiomics, and deep-learning features shows promise for preoperative prediction of MVI in HCC, aiding in patient outcome predictions and personalized treatment planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2024.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!