[Effect of loading angle and fabrication materials on stress distribution with periodontal splint in compromised periodontal tissues: a finite element study].

Zhonghua Kou Qiang Yi Xue Za Zhi

Digital Dental Center, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Xi'an710032, China.

Published: November 2024

To evaluate the effect of polyetheretherketone (PEEK) periodontal splints and splints made from other materials under static loading on stress distributions in periodontal tissues, cement layer, and splints themselves. A finite element model based on cone-beam CT imaging data of a 25-year-old male patient (treated at the Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University in October 2021 for a cracked maxillary molar) with a healthy and intact mandibular dentition and periodontal health was constructed. The finite element model included anterior mandible dentition, mandibular bone model without bone resorption (WBR group), a periodontally compromised mandible model (control group), and three types of periodontal splints: a PEEK periodontal splint (0.7 mm thick, Young's modulus: 4.1 MPa), a fiber-reinforced resin (FRC) splint (1.0 mm thick, Young's modulus: 37.0 MPa), and a titanium splint (1.2 mm thick, Young's modulus: 110.0 MPa). The bone resorption models fixed with different periodontal splints constituted the experimental groups (PEEK group, FRC group and titanium group). Loading of 100 N was applied on the midpoint of the incisal edge of tooth 41. The direction was set at 0°, which was parallel to the long axis of the tooth and downward. The buccal to lingual and downward angles were 30°and 60°, respectively, perpendicular to the long axis of the tooth and 90° to the lingual side. The finite element analysis software was utilized to analyze the stress distribution characteristics of the periodontal tissues, adhesive layer, and the splint itself in the anterior mandibular teeth among the different group. Under the different loading simulation, in the control group, the maximal von Mises stresses of periodontal ligament and bone were 15.7-50.2 MPa and 38.8-130.3 MPa, respectively, and in the WBR group, the maximal von Mises stresses of periodontal ligament and bone were 3.6-6.4 MPa and 16.5-42.7 MPa, respectively. Under the same loading conditions, the magnitude of maximal von Mises stresses in periodontal tissues in the PEEK group was 4.6-6.2 MPa, and the magnitude of stresses in the periodontal ligament of 41 teeth in the WBR group was similar to that in the PEEK group, but higher than that in the FRC and titanium groups. The maximal von Mises stresses of each group is primarily distributed in the periodontal ligament and alveolar bone at the cervical area of the tooth. The higher the elastic modulus of the splint, the higher its own maximal von Mises stresses, and the smaller the maximal principal stresses transmitted to the adhesive layer. In the PEEK group and titanium group, the stress distribution area in the adhesive layer and the splint was near the splint connection adjacent to tooth 41. Periodontal splints fabricated from three types of materials, are effective in distributing stress within the periodontal tissues of the abutment teeth. Compared to FRC and titanium group, the higher PEEK splint stress value was obtained, and the smaller the stress value was transmitted to its adhesive layer.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn112144-20240712-00270DOI Listing

Publication Analysis

Top Keywords

periodontal tissues
20
maximal von
20
von mises
20
mises stresses
20
periodontal
16
finite element
16
periodontal splints
16
peek group
16
adhesive layer
16
stresses periodontal
16

Similar Publications

The impact of aging on neutrophil functions and the contribution to periodontitis.

Int J Oral Sci

January 2025

Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA.

The increasing aging population and aging-associated diseases have become a global issue for decades. People over 65 show an increased prevalence and greater severity of periodontitis, which poses threats to overall health. Studies have demonstrated a significant association between aging and the dysfunction of neutrophils, critical cells in the early stages of periodontitis, and their crosstalk with macrophages and T and B lymphocytes to establish the periodontal lesion.

View Article and Find Full Text PDF

Background: Anatomically formed healing abutments were suggested in literature to address many of the issues associated with immediate posterior implant insertion such as large extraction sockets that are extremely hard to seal without reflecting the mucoperiosteal flap, extraction sockets anatomy that are not suitable for regular healing abutment placement, and potentially high occlusal stresses when planning a temporary implant supported prothesis to improve the conditioning of supra implant tissue architecture and the emergence profile of the implant supported restorations.

Purpose: To clinically evaluate the peri-implant soft tissue profile of single posterior implant retained restorations and to assess patient related outcomes of the implant restorations that were conditioned immediately by CAD-CAM socket sealing abutments (SSA) versus those conditioned by Titanium (Ti) standard healing abutments (SHA).

Methods: Twenty participants received twenty-two single maxillary immediate implants after flapless minimally invasive tooth extraction and 3D guided implant placement in the posterior area (premolar and molar) and allocated randomly into two groups (n = 11), the intervention group: patients received PEEK SSA and the control group: the patients received Ti SHA.

View Article and Find Full Text PDF

Optimizing natural human-derived decellularized tissue materials for periodontal bone defect repair.

Biochem Biophys Res Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. Electronic address:

Periodontal disease is a major contributor to tooth loss worldwide in adults. Particularly, periodontal bone defect is a common clinical condition, yet current therapeutic strategies exhibit limited effectiveness. Recently, natural bone graft materials have attracted considerable interest for enhancing bone defect repair due to their superior biocompatibility and osteogenic capabilities.

View Article and Find Full Text PDF

Objectives: The present systematic review aimed to evaluate if cortical bone perforation is effective in enhancing periodontal surgery and guided bone regeneration (GBR) in humans.

Materials And Methods: Electronic search was performed in PubMed, Scopus and Cochrane CENTRAL up to October 31st, 2023. Grey literature was also searched.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential.

J Inflamm Res

January 2025

Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People's Republic of China.

Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!