RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in but its mechanistic role remains unclear. Here, we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or Δ cells to chromosome XII duplication, in several cases indicating genetic interactions with in the context of aneuploidy. We integrated these findings with results from a global overexpression screen that identified genes whose duplication complements Δ aneuploid sensitivity. The resulting network points to a subgroup of proteins with shared roles in translational repression and P-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1261/rna.080199.124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!