Rapid and uncontrolled urbanization in sub-Saharan Africa has led to an increased production and expansion of synthetic chemicals, resulting in significant pollution of the aquatic environments, particularly by Emerging Organic Contaminants (EOCs). Due to the low income of the population in this region, there is often a lack of control over water and fishery resources prior to consumption. Therefore, the current study aims to use EOCs as markers of water resource quality degradation, and to assess the potential environmental risk of these compounds on some aquatic organisms. Among 120 targeted compounds, 66 were detected at 22 sites in Douala city, Cameroon, including 9 rivers and 13 groundwater samples. The detected EOCs were classified into three categories, including pharmaceuticals and personal care products (n = 55), lifestyle compounds (n = 7) and industrial compounds (n = 4). Surface water was highly impacted, with EOC total concentrations reaching 61,273 ng/L, versus 16,677 ng/L in groundwater. Contamination levels and the type of contaminants were closely linked to land use patterns in the study area. Contamination was mainly attributed to domestic, hospital and brewery's industry wastewaters, landfill and pit latrines. Consumption patterns and physicochemical properties of compounds, in particular their persistence, polarity and octanol/water gradient (Kow), explain their occurrence at high concentrations (up to μg/L) in groundwater. According to Risk Quotient (RQ) with a maximum of 93.4 in surface water and 8.5 in groundwater, about 1/3 of the identified compounds pose a serious threat to aquatic organisms, including algae, invertebrates and fish. For the first time in Central African, we revealed these high levels of water contamination by EOCs and identified the risk for the environmental health. Our study demonstrates the urgency to adopt sustainable water management strategies in large cities of the region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177217 | DOI Listing |
ACS ES T Water
January 2025
Department of Geological Sciences, University of Saskatchewan, 114 Science Pl, Saskatoon, Saskatchewan, Canada, S7N 5E2.
Metals are ubiquitous in Earth's Critical Zone and play key roles in ecosystem function, human health, and water security. They are essential nutrients at low concentrations, yet some metals are toxic at a high dose. Permafrost thaw substantially alters all the physical and chemical processes governing metal mobility, including water movement and solute transport and (bio)geochemical interactions involving water, organic matter, minerals, and microbes.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic.
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation.
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.
ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!