Dynamics of interaction and internalisation of the antifungal protein PeAfpA into Penicillium digitatum morphotypes.

Int J Biol Macromol

Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain.. Electronic address:

Published: December 2024

AI Article Synopsis

  • Antifungal proteins (AFPs), particularly PeAfpA from Penicillium expansum, exhibit strong antifungal activity, though their mechanisms remain unclear.
  • PeAfpA influences the morphology and growth of P. digitatum without causing a spike in reactive oxygen species like the less effective PdAfpB.
  • Live-cell imaging showed PeAfpA's dynamic interaction with various P. digitatum states, leading to its eventual internalization in hyphae and triggering cell death, providing insights for future biofungicide development.

Article Abstract

Antifungal proteins (AFPs) as the highly active PeAfpA from Penicillium expansum or PdAfpB from Penicillium digitatum exert promising antifungal activity, but their mode of action is not fully understood. We characterised the interaction of PeAfpA against P. digitatum, comparing it to the less active PdAfpB. Despite similar effect on conidia germination, PeAfpA did not induce a burst of reactive oxygen species as PdAfpB. Live-cell fluorescence microscopy revealed complex dynamics of interaction and internalisation of both proteins with distinct P. digitatum morphotypes (quiescent conidia, swollen conidia, germlings and hyphae). Labelled PeAfpA co-localised at the cell wall of quiescent conidia, where its localisation was punctate and not uniformly distributed. This pattern changed during germination to a uniform distribution with increased intensity. Conidia from mutants of genes involved in melanin biosynthesis (pksP/alb1 or arp2) showed an altered distribution of PeAfpA but later mimicked the wild type trend of changes during germination. In swollen conidia and germlings, PeAfpA remained attached to the cell wall. In hyphae, PeAfpA was internalised through the growing hyphal tip after binding to the cell wall, in a non-endocytic but energy-dependent process that caused vacuolisation, which preceded cell death. These results may help the development of biofungicides based on AFPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136980DOI Listing

Publication Analysis

Top Keywords

cell wall
12
dynamics interaction
8
interaction internalisation
8
peafpa
8
peafpa penicillium
8
penicillium digitatum
8
digitatum morphotypes
8
quiescent conidia
8
swollen conidia
8
conidia germlings
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!