AI Article Synopsis

  • Type III CRISPR systems protect against genetic threats by producing cyclic oligo-adenylate (cA) that activates effector proteins with CRISPR-associated Rossman fold (CARF) domains.
  • Researchers studied an effector called CRISPR-associated adenosine deaminase 1 (Cad1), which converts ATP to ITP when cA binds to its CARF domain.
  • Structural analysis showed Cad1 forms a hexameric assembly and, when activated by cA during a viral infection, it causes a growth arrest in the host, preventing viral replication and demonstrating diverse immune mechanisms in prokaryotes.

Article Abstract

Type III CRISPR systems provide immunity against genetic invaders through the production of cyclic oligo-adenylate (cA) molecules that activate effector proteins that contain CRISPR-associated Rossman fold (CARF) domains. Here, we characterized the function and structure of an effector in which the CARF domain is fused to an adenosine deaminase domain, CRISPR-associated adenosine deaminase 1 (Cad1). We show that upon binding of cA or cA to its CARF domain, Cad1 converts ATP to ITP, both in vivo and in vitro. Cryoelectron microscopy (cryo-EM) structural studies on full-length Cad1 reveal an hexameric assembly composed of a trimer of dimers, with bound ATP at inter-domain sites required for activity and ATP/ITP within deaminase active sites. Upon synthesis of cA during phage infection, Cad1 activation leads to a growth arrest of the host that prevents viral propagation. Our findings reveal that CRISPR-Cas systems employ a wide range of molecular mechanisms beyond nucleic acid degradation to provide adaptive immunity in prokaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645235PMC
http://dx.doi.org/10.1016/j.cell.2024.10.002DOI Listing

Publication Analysis

Top Keywords

adenosine deaminase
12
crispr-associated adenosine
8
deaminase cad1
8
cad1 converts
8
converts atp
8
atp itp
8
carf domain
8
cad1
5
deaminase
4
itp provide
4

Similar Publications

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

Background: Tuberculous spondylitis (TS) and brucellar spondylitis (BS) exhibit certain similarities in clinical presentation and imaging characteristics, making differential diagnosis challenging. Developing a reliable differential diagnosis model can assist clinicians in distinguishing between these two conditions at an early stage, allowing for targeted prevention and treatment strategies.

Methods: Patients diagnosed with TS and BS were retrospectively collected and randomized into training and validation cohorts (ratio 7:3).

View Article and Find Full Text PDF

Predictive marker for response to trifluridine/tipiracil plus bevacizumab in metastatic colorectal cancer patients.

BMC Cancer

January 2025

Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.

Objective: Trifluridine/tipiracil (FTD/TPI) is one of the options for late-line treatment of colorectal cancer (CRC). However, the specific patient populations that would particularly benefit from it remain unclear. This study attempted to identify predictive markers of chemotherapy efficacy with trifluridine/tipiracil (FTD/TPI), focusing on the RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) expression and neutrophil-lymphocyte ratio (NLR).

View Article and Find Full Text PDF

Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis.

Immunol Rev

January 2025

Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.

Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.

View Article and Find Full Text PDF

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!