As concerns about environmental pollution grow, the rapid identification and quantification of pollutants have become increasingly vital. In this work, a series of pyrimidine derivatives-Cu enzyme mimics (Cytosine-Cu, Cytidine-Cu, and CMP-Cu) with laccase- and peroxidase-like activity were prepared through the coordination of Cu with different pyrimidine derivatives (PDs). The PDs-Cu enzyme mimics contain high levels of Cu and N - Cu coordination structures, which provide sufficient catalytic sites for the substrates. Compared with natural enzymes and other nanozymes, PDs-Cu demonstrate superior substrate affinity, catalytic efficiency, stability, and resistance to interference. It was found that PDs-Cu enzyme mimics have different catalytic activities towards different phenolic compounds. Therefore, a three-channel colorimetric sensor array (CSA) was successfully developed utilizing PDs-Cu as the sensing elements. The CSA can accurately identify different phenolic compounds and their mixtures in seawater and simulated wastewater. Additionally, a colorimetric method for detecting HO in eye drops was developed, featuring a detection range of 0.1-10.0 μM and a limit of quantification of 0.1 μM. This research not only provides a flexible protocol for regulating the catalytic activity of enzyme mimics, but also provides important inspiration for the development of methods for rapid identification and detection of contaminants in the environmental water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136294DOI Listing

Publication Analysis

Top Keywords

enzyme mimics
20
phenolic compounds
12
sensing elements
8
rapid identification
8
pds-cu enzyme
8
enzyme
5
mimics
5
construction pyrimidine
4
pyrimidine derivatives-copper
4
derivatives-copper enzyme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!