Bile acids have been known to play significant roles at certain physiological levels in gastrointestinal metabolism. Yet, they are known to be carcinogenic and aid in tumor progression in most cases, although the roles remain uncertain. Hence, we tested the cytotoxic potential of cholic acid (CA) loaded chitosan nanoparticles (CNPs) on Hep3B cells. The physicochemical properties of the CNPs synthesized with CA load (CA-CNPs) were determined using standard techniques such as ultraviolet-visible spectrophotometry (UV-Vis), fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The characteristic peak for chitosan nanoparticles were observed for plain CNPs (pCNPs) and CA-CNPs at around 300 nm as per UV-Vis analysis. FTIR analysis indicated the possible trapping of CA onto CNPs as certain peaks were retained and some peaks were shifted. XRD analysis determined that the peaks representing CA and pCNPs were collectively obtained in CA-CNPs. As per DLS analysis, the particle size, PDI and ζ-potential of the CA-CNPs were 259 nm, 0.284 and 30.4 mV. Further, the CA-CNPs were non-cytotoxic on Hep3B cells at the maximum tested concentration of 500 μg/mL. The viability at 500 μg/mL of CA-CNPs was two-fold higher than 500 μg/mL of pCNPs. Also, the pCNPs were not hemolytic and therefore could not have played a role in the increase of viability after treatment with CA-CNPs, which indicates that CA posed a major role in increased viability of Hep3B cells. As per quantitative PCR (qPCR), the upregulated gene expressions of PI3K, Akt, mTORC2, cMyc, Fibronectin, hVPS34, Slug and ZEB1 and the downregulated expression of the tumor suppressor PTEN indicates that PI3K/Akt/mTOR pathway mediated the induction of epithelial-to-mesenchymal transition (EMT) in response to CA-CNPs treatment on Hep3B cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2024.109296 | DOI Listing |
Anal Cell Pathol (Amst)
January 2025
School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
DEAD-box helicase 21 (DDX21) is a conserved Asp-Glu-Ala-Asp (DEAD) box RNA helicase with multiple functions that is involved in various cellular processes and diseases. However, the role of DDX21 in the recurrence and prognosis of hepatocellular carcinoma (HCC) patients remains unknown. In the current study, we examined the protein expression of DDX21 in HCC tissues through immunohistochemical staining and analyzed the correlation between DDX21 protein expression and clinical outcome via Kaplan-Meier survival analysis.
View Article and Find Full Text PDFMol Cell Probes
January 2025
Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea. Electronic address:
Despite numerous attempts to understand the molecular mechanisms behind the development of liver cancer, it continues to pose a significant worldwide health challenge. Transcriptome sequencing, a powerful tool in molecular biology, has played a pivotal role in uncovering the intricate gene expression profiles underlying hepatocellular carcinoma (HCC). In the present study, we identified a total of 808 differentially expressed genes (DEGs), with 584 exhibiting downregulation, and 224 showing upregulation following apigetrin treatment.
View Article and Find Full Text PDFToxicology
January 2025
Department of Pharmacology, Shantou University Medical College, Shantou 515041, China. Electronic address:
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFAm J Hematol
January 2025
Keros Therapeutics, Lexington, Massachusetts, USA.
Patients with chronic inflammation are burdened with anemia of inflammation (AI), where inflammatory cytokines inhibit erythropoiesis, impede erythropoietin production, and limit iron availability by inducing the iron regulator hepcidin. High hepcidin hinders iron absorption and recycling, thereby worsening the impaired erythropoiesis by restricting iron availability. AI management is important as anemia impacts quality of life and potentially affects morbidity and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!