In mammals and , Asp/ASPM proteins contribute to cell proliferation and spindle formation. Recent evidence also suggests interphase roles for Asp/ASPM proteins, but little is known about the regulation allowing distinct roles in different cell cycle phases. In this review, we consider a cross-species comparison of Asp/ASPM protein sequences in light of cyclin-CDK literature, and suggest Asp/ASPM proteins to be prime candidates for cyclin-CDK regulation. Conserved regulatory features include an N-terminal proline directed serine/threonine (S/T-P) "supershift" phosphorylation domain common to proteins with bistable interphase and mitotic roles, as well as putative cyclin-binding sites positioned to allow multisite phosphorylation by cyclin-CDK complexes. Human, mouse, and Asp/ASPM protein structural predictions show that multisite phosphorylation of the N-term supershift domain could alter the availability of CH-domains and HEAT-motifs, which can contribute to microtubule binding and protein aggregation likely required for spindle formation. Structural predictions of the smallest reported microcephaly patient truncation also emphasize the importance of the arrangement of these motifs. We position this analysis within recent literature to build new hypotheses for Asp/ASPM regulation in interphase and mitosis, as well as de-regulation in microcephaly and cancer. We also highlight the utility of comparing structural/functional differences between human ASPM and Asp to gain further insight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/gen-2024-0111 | DOI Listing |
Genome
October 2024
Department of Biology, Mount St. Vincent University, Halifax, NS B3M 2J6, Canada.
In mammals and , Asp/ASPM proteins contribute to cell proliferation and spindle formation. Recent evidence also suggests interphase roles for Asp/ASPM proteins, but little is known about the regulation allowing distinct roles in different cell cycle phases. In this review, we consider a cross-species comparison of Asp/ASPM protein sequences in light of cyclin-CDK literature, and suggest Asp/ASPM proteins to be prime candidates for cyclin-CDK regulation.
View Article and Find Full Text PDFCells
March 2023
IBPM CNR c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
The () gene was discovered about 40 years ago and shown to be required for both mitotic and meiotic cell division. Subsequent studies showed that is highly conserved and that mutations in its human ortholog (; or ) are the most common cause of autosomal recessive primary microcephaly. This finding greatly stimulated research on and its fly and mouse () orthologs.
View Article and Find Full Text PDFCells
July 2022
Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!