Multienvironment trials (METs) are crucial for identifying varieties that perform well across a target population of environments. However, METs are typically too small to sufficiently represent all relevant environment-types, and face challenges from changing environment-types due to climate change. Statistical methods that enable prediction of variety performance for new environments beyond the METs are needed. We recently developed MegaLMM, a statistical model that can leverage hundreds of trials to significantly improve genetic value prediction accuracy within METs. Here, we extend MegaLMM to enable genomic prediction in new environments by learning regressions of latent factor loadings on Environmental Covariates (ECs) across trials. We evaluated the extended MegaLMM using the maize Genome-To-Fields dataset, consisting of 4,402 varieties cultivated in 195 trials with 87.1% of phenotypic values missing, and demonstrated its high accuracy in genomic prediction under various breeding scenarios. Furthermore, we showcased MegaLMM's superiority over univariate GBLUP in predicting trait performance of experimental genotypes in new environments. Finally, we explored the use of higher-dimensional quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic prediction from METs. We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics where large-scale linear mixed models are utilized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708919PMC
http://dx.doi.org/10.1093/genetics/iyae171DOI Listing

Publication Analysis

Top Keywords

genomic prediction
12
environmental covariates
8
environments mets
8
megalmm
5
environments
5
mets
5
prediction
5
megalmm improves
4
genomic
4
improves genomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!