To prevent the deterioration of the global environment, the reduction of chemical pesticide use and the development of eco-friendly pest control technologies are urgent issues. Our recent study revealed that the production of reactive oxygen species (ROS) by dual oxidase (Duox) plays a pivotal role in stabilizing the tracheal network by intermediating the tyrosine cross-linking of proteins that constitute trachea. Notably, the formation of dityrosine bonds by ROS can be inhibited by the intake of an antioxidant cysteine derivative N-acetyl-L-cysteine (NAC), which can suppress insect respiration. In this study, we screened for the derivatives showing insecticidal activity and tracheal formation inhibition. As a result of investigating the soybean pest bug Riptortus pedestris, cysteine and methionine derivatives showed respiratory formation inhibition and high insecticidal activity. In particular, NAC had a slow-acting insecticidal effect, while L-cysteine methyl ester (L-CME) showed relatively fast-acting insecticidal activity. Furthermore, the insecticidal activity of these derivatives was also detected in Drosophila, mealworms, cockroaches, termites, and plant bugs. Our results suggest that some antioxidant compounds have specific tracheal inhibitory activity in different insect species and they may be used as novel pest control agents upon further characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521293 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310919 | PLOS |
J Econ Entomol
January 2025
Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China.
Methoxyfenozide is an insecticide with a unique mode of action on the insect ecdysone receptor and has been registered for the control of insect pests all over the world. In the present work, Spodoptera frugiperda was exposed to sublethal and lethal concentrations of methoxyfenozide to determine its impact on specific biological traits, metabolic enzyme activity, and the expression of detoxification enzymes. The result showed that 72-h posttreatment with LC50 and LC70 of methoxyfenozide significantly reduced the fecundity (eggs/female) of the F0 generation compared to those of the control group.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China.
The application of neonicotinoid insecticides (NEOs) increases the potential exposure risks and has an impact on the aroma quality of tomato fruits. Here, 3D cornflower-like MoS (MoS-CF) was fabricated to directly activate peroxymonosulfate (PMS) for fast removal of three typical NEOs. The 3D MoS-CF catalyst achieved over 96.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
During the long-term interaction between plants and phytophagous insects, plants generate diverse plant secondary metabolites (PSMs) to defend against insects, whereas insects persistently cause harm to plants by detoxifying PSMs. Xanthotoxin is an insect-resistant PSM that is widely found in plants. However, the understanding of detoxification mechanism of xanthotoxin in insects is still limited at present.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!