Diffusion magnetic resonance imaging (dMRI) is a non-invasive method for capturing the microanatomical information of tissues by measuring the diffusion weighted signals along multiple directions, which is widely used in the quantification of microstructures. Obtaining microscopic parameters requires dense sampling in the q space, leading to significant time consumption. The most popular approach to accelerating dMRI acquisition is to undersample the q-space data, along with applying deep learning methods to reconstruct quantitative diffusion parameters. However, the reliance on a predetermined q-space sampling strategy often constrains traditional deep learning-based reconstructions. The present study proposed a novel deep learning model, named attention-based q-space deep learning (aqDL), to implement the reconstruction with variable q-space sampling strategies. The aqDL maps dMRI data from different scanning strategies onto a common feature space by using a series of Transformer encoders. The latent features are employed to reconstruct dMRI parameters via a multilayer perceptron. The performance of the aqDL model was assessed utilizing the Human Connectome Project datasets at varying undersampling numbers. To validate its generalizability, the model was further tested on two additional independent datasets. Our results showed that aqDL consistently achieves the highest reconstruction accuracy at various undersampling numbers, regardless of whether variable or predetermined q-space scanning strategies are employed. These findings suggest that aqDL has the potential to be used on general clinical dMRI datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3487755 | DOI Listing |
Adv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!