Background: In Brazil, gas stations are not self-service; attendants fill fuel tanks, leading to chronic exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes), which can cause bone marrow degeneration and immunosuppression. This systematic review highlights recent advances in biomonitoring gas station workers (GSW).
Methods: We searched PubMed, Medline, and Cochrane databases for articles in English, French, Portuguese, and Spanish from 2014 to April 30, 2024, using multiple search terms.
Results: A total of 1,086 articles were identified, 322 were analyzed, and 13 were included in the final review. We highlighted recent technologies in GSW biomonitoring, such as immunophenotyping, molecular cytogenetics (FISH), and measuring miRNAs and inflammatory markers via ELISA. We also explored the link between benzene exposure and immunosuppression and suggested a potential association with chronic inflammation. Conclusion: GSWs face significant health risks and require continuous clinical monitoring, even in the absence of overt disease. Effect biomarkers may indicate early biological responses to benzene toxicity and highlight potential health risks. However, there is no universally accepted gold standard for assessing these biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31557/APJCP.2024.25.10.3439 | DOI Listing |
Anal Chim Acta
January 2025
School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:
The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China. Electronic address:
Wearable sensors can easily enable real-time and noninvasive glucose (Glu) monitoring, providing vital information for effectively preventing various complications caused by high glucose level. Here, a wearable sensor based on nanozyme-catalyzed cascade reactions is designed for Glu monitoring in sweat. Au nanoparticles (AuNPs) are anchored to the carbonated zeolitic imidazolate framework-8 (ZIF-8-C), endowing the sensor with Glu oxidase (GOx)-like and peroxidase (POD)-like activity.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
Vanin-1 is a pantetheine hydrolase that plays a key role in inflammatory diseases. Effective tools for noninvasive, real-time monitoring of Vanin-1 are lacking, largely due to background fluorescence interference in existing probes. To address this issue, we developed a dual-modal fluorescent and colorimetric probe, MB-Van1, to detect Vanin-1 with high sensitivity and selectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Adenosine triphosphate (ATP), the primary energy currency in cells, is dynamically regulated across different subcellular compartments. The ATP interplay between mitochondria and endoplasmic reticulum (ER) underscores their coordinated roles in various biochemical processes, highlighting the necessity for precise profiling of subcellular ATP dynamics. Here we present an exogenously and endogenously dual-regulated DNA nanodevice for spatiotemporally selective, subcellular-compartment specific signal amplification in ATP sensing.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.
Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!