Comparative assessment of physics-based in silico methods to calculate relative solubilities.

J Comput Aided Mol Des

Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany.

Published: October 2024

AI Article Synopsis

  • Relative solubilities play a vital role in fields such as pharmaceuticals, agriculture, and environmental chemistry, impacting formulation and synthesis processes.
  • The study evaluates different computational methods, including COSMO-RS and various molecular dynamics approaches, for predicting solubility across 200 solvent-solute pairs.
  • Results reveal that compound multimerization significantly influences solubility predictions, with varying levels of accuracy among the methods based on the specific solute and technique used.

Article Abstract

Relative solubilities, i.e. whether a given molecule is more soluble in one solvent compared to others, is a critical parameter for pharmaceutical and agricultural formulation development and chemical synthesis, material science, and environmental chemistry. In silico predictions of this crucial variable can help reducing experiments, waste of solvents and synthesis optimization. In this study, we evaluate the performance of different physics-based methods for predicting relative solubilities. Our assessment involves quantum mechanics-based COSMO-RS and molecular dynamics-based free energy methods using OPLS4, the open-source OpenFF Sage, and GAFF force fields, spanning over 200 solvent-solute combinations. Our investigation highlights the important role of compound multimerization, an effect which must be accounted for to obtain accurate relative solubility predictions. The performance landscape of these methods is varied, with significant differences in precision depending on both the method used and the solute considered, thereby offering an improved understanding of the predictive power of physics-based methods in chemical research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-024-00576-yDOI Listing

Publication Analysis

Top Keywords

relative solubilities
12
physics-based methods
8
methods
5
comparative assessment
4
assessment physics-based
4
physics-based silico
4
silico methods
4
methods calculate
4
relative
4
calculate relative
4

Similar Publications

Deep eutectic solution elution assisted ligand affinity assay: A useful tool for the active coumarins screening from Fructus cnidii.

Anal Chim Acta

January 2025

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:

Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.

View Article and Find Full Text PDF

Improving flavor of Wuyi rock tea processed from rain-soaked leaves by optimizing withering conditions.

Food Chem

January 2025

Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization.

View Article and Find Full Text PDF

The eco-stoichiometry of Ca/Cd in soil significantly affects Cd uptake and accumulation by plants in carbonate regions. In this study, the physiological responses and detoxification mechanisms of Capsicum annuum L. (capsicum) were investigated based on the eco-stoichiometric relationship of Ca/Cd in production substrates under varying pH levels (5, 6, and 7).

View Article and Find Full Text PDF

Lithium complexing strategy based on host-guest recognition for efficient Mg/Li separation.

Water Res

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China. Electronic address:

Ion selective membranes with precise Mg/Li separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg/Li as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li and CE.

View Article and Find Full Text PDF

Effects of exogenous calcium pretreatment on the cold resistance of Phoebe zhennan seedlings.

Plant Physiol Biochem

December 2024

School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, PR China. Electronic address:

Phoebe zhennan is a high-quality timber tree species mainly distributed in the subtropical regions of China. It is very important to study and improve the cold resistance of P. zhennan from the mechanism and practice for expanding its introduction and cultivation range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!