Objectives: We aimed to characterize the brain abnormalities that are associated with the cognitive and physical performance of patients with relapsing-remitting multiple sclerosis (RRMS) using a deep learning algorithm.

Materials And Methods: Three-dimensional (3D) nnU-Net was employed to calculate a novel spatial abnormality map by T1-weighted images and 281 RRMS patients (Dataset-1, male/female = 101/180, median age [range] = 35.0 [17.0, 65.0] years) were categorized into subtypes. Comparison of clinical and MRI features between RRMS subtypes was conducted by Kruskal-Wallis test. Kaplan-Meier analysis was conducted to investigate disability progression in RRMS subtypes. Additional validation using two other RRMS datasets (Dataset-2, n = 33 and Dataset-3, n = 56) was conducted.

Results: Five RRMS subtypes were identified: (1) a Frontal-I subtype showing preserved cognitive performance and mild physical disability, and low risk of disability worsening; (2) a Frontal-II subtype showing low cognitive scores and severe physical disability with significant brain volume loss, and a high propensity for disability worsening; (3) a temporal-cerebellar subtype demonstrating lowest cognitive scores and severest physical disability among all subtypes but remaining relatively stable during follow-up; (4) an occipital subtype demonstrating similar clinical and imaging characteristics as the Frontal-II subtype, except a large number of relapses at baseline and preserved cognitive performance; and (5) a subcortical subtype showing preserved cognitive performance and low physical disability but a similar prognosis as the occipital and Frontal-II subtypes. Additional validation confirmed the above findings.

Conclusion: Spatial abnormality maps can explain heterogeneity in cognitive and physical performance in RRMS and may contribute to stratified management.

Key Points: Question Can a deep learning algorithm characterize the brain abnormalities associated with the cognitive and physical performance of patients with RRMS? Findings Five RRMS subtypes were identified by the algorithm that demonstrated variable cognitive and physical performance. Clinical relevance The spatial abnormality maps derived RRMS subtypes had distinct cognitive and physical performances, which have a potential for individually tailored management.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-024-11157-wDOI Listing

Publication Analysis

Top Keywords

cognitive physical
24
physical performance
20
rrms subtypes
20
physical disability
16
abnormality maps
12
associated cognitive
12
spatial abnormality
12
subtype showing
12
preserved cognitive
12
cognitive performance
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!