Objective: Major depressive disorder (MDD) is associated with cognitive impairments that persist despite successful treatment. Transcranial magnetic stimulation is a noninvasive treatment for MDD that is associated with small procognitive effects on working memory and executive function. We hypothesized that pairing stimulation with N-methyl-D-aspartate (NMDA) receptor agonism would enhance the effects of stimulation and its procognitive effects.
Method: The effect of NMDA receptor agonism (D-cycloserine, 100 mg) on cognitive performance was tested in two randomized double-blind placebo-controlled trials: (1) acute effects of in the absence of stimulation (= 20 healthy participants) and (2) a treatment study of individuals with MDD (= 50) randomized to daily intermittent theta-burst stimulation (iTBS) with placebo or D-cycloserine for 2 weeks. Cognitive function was measured using the THINC-it battery, comprised of the Perceived Deficits Questionnaire, the Choice Reaction Time, the Trail Making Test, the Digit Symbol Substitution Test, and the 1-Back tests.
Results: D-cycloserine had no acute effect on cognition compared to placebo. iTBS + D-cycloserine was associated with significant improvements in subjective cognitive function and correct responses on the 1-Back when compared to iTBS + placebo. Improvements in subjective cognition paralleled depressive symptoms improvement, however 1-Back improvements were not attributable to improvement in depression.
Conclusions: An intersectional strategy pairing iTBS with NMDA receptor agonism may restore cognitive function in MDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562928 | PMC |
http://dx.doi.org/10.1177/07067437241293984 | DOI Listing |
Alzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Arc is a synaptic immediate early gene that mediates two distinct pathways at excitatory synapses. Canonically, Arc accelerates endocytosis of AMPA receptors by direct binding to TARPgs and endocytic machinery and thereby contributes to mGluR-LTD. Arc also acts at recently potentiated synapses, where it is phosphorylated by CaMKII and binds NMDAR subunits NR2A and NR2B and recruits the PI3K adaptor p55PIK to assemble a signaling complex that activates AKT and inhibits GSK3β.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: The U.S. Population is older today than it has ever been.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.
Background: Neurotransmitter receptors' contribution to Alzheimer's disease (AD) pathology development has been implicated by basic science studies but is yet to be fully established. Here, we incorporate receptor density maps into network spreading models to predict amyloid and tau patterns in AD, reflecting their potential roles in facilitating or impeding pathology production and connectivity-mediated spread.
Method: Amyloid-PET positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were divided into "early" (n = 119) and "late" (n = 69) pathology groups according to tau accumulation in the temporal cortex (Figure 1A).
Alzheimers Dement
December 2024
Faculty of Medicine, Arish University, Arish, North Sinai, Egypt.
Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study's aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer's Dementia (AD).
Methods: Retrospective trials on rodents i.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!