A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strength in Numbers: A Giant NIR-II AIEgen with One-for-All Phototheranostic Features for Exceptional Orthotopic Bladder Cancer Treatment. | LitMetric

Strength in Numbers: A Giant NIR-II AIEgen with One-for-All Phototheranostic Features for Exceptional Orthotopic Bladder Cancer Treatment.

Angew Chem Int Ed Engl

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China.

Published: October 2024

One-for-all phototheranostics that allows the simultaneous implementations of multiple optical imaging and therapeutic modalities by utilizing a single component, is growing into a sparkling frontier in cancer treatment. Of particular interest is phototheranostic agent with emission in the second near-infrared (NIR-II) window. Nevertheless, the practical uses of those conventional NIR-II agents are severely impeded by their unsatisfactory features including insufficient stability, low synthetic yield, to be extended absorption/ emission wavelengths, and inefficient phototheranostic outcomes. Developing exceptional phototheranostic agents is thus highly desirable yet remains formidably challenging. Herein, we synthesized two novel N-heteroacenes-based NIR-II luminogens, namely 2TT-PPT and 4TT-PBPT, by respectively employing pyrene-fused phenaziothiadiazoles and pyrene-fused bisphenaziothiadiazoles as acceptor skeletons. There is strength in numbers by increasing the fusing rings in N-heteroacenes moieties and numbers of appended donors. Compared to less ring-fused 2TT-PPT, the giant molecule 4TT-PBPT shows improved photophysical characteristics, such as enhanced light absorbance, red-shifted wavelengths, higher brightness, favorable reactive oxygen species (ROS) generation, and elevated photothermal conversion efficiency, which render 4TT-PBPT nanoparticles excellent fluorescence-photoacoustic-photothermal trimodal imaging guided photodynamic-photothermal synergistic therapy for orthotopic bladder cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417865DOI Listing

Publication Analysis

Top Keywords

strength numbers
8
orthotopic bladder
8
bladder cancer
8
cancer treatment
8
numbers giant
4
nir-ii
4
giant nir-ii
4
nir-ii aiegen
4
aiegen one-for-all
4
phototheranostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!