Developing an efficient and stable catalyst is both attractive and challenging for the electrochemical hydrogen evolution reaction (HER) due to the aggravation under the operating environment. MXene (TiCT) is a potential catalyst support because of its abundant surface functional groups and unique hydrophilicity. However, anchoring noble metals onto MXene to construct high-performance electrocatalysts still presents some challenges. Herein, we present an MXene nanoparticle-supported Ru nanocluster (Ru@MXene-NP) electrocatalyst for HER. The Ru@MXene-NP not only effectively prohibits self-stacking but also ensures the full exposure of Ru nanoclusters. Thus, the Ru@MXene-NP catalyst exhibits an overpotential of 38.4 mV at 10 mA cm and a Tafel slope of 26.4 mV dec in an acidic medium, showcasing superior performance compared to most previously reported MXene-based catalysts. The small Tafel slope and low charge transfer resistance ( = 0.39 Ω) value indicate its fast electron transfer behavior. In addition, cyclic voltammetry curves and chronoamperometry tests demonstrate the high stability of Ru@MXene-NP. This work offers a novel perspective for designing catalysts by supporting noble metal nanoclusters on the MXene substrate's surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02600d | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.
The elemental and isotopic abundances of major species in the Martian atmosphere have been determined, but analyses often lack sufficient precision, and those of minor and trace species are frequently not well known. Many important questions about the evolution and current state of Mars require the kind of knowledge that can be gained from analysis of a returned sample of the Martian atmosphere. Key target species include the noble gases, nitrogen, and various species containing carbon, hydrogen, and oxygen, such as methane.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Hydrogen spillover-based binary (HSBB) system has attracted significant attention in alkaline hydrogen evolution reaction (HER). Accelerating hydrogen spillover in the HSBB system is crucial for the HER activity. Herein, a highly efficient HSBB system is developed by anchoring nano-Ru on oxygen vacancy (Vo) rich amorphous/crystal ZrO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Institute of Organic Chemistry, Materials Science, 345 lingling Road, 200032, Shanghai, CHINA.
Three-dimensional covalent organic frameworks (3D COFs), a class of highly porous crystalline polymers, have exhibited great potentials in many applications. However, the reported topologies of 3D COFs have been limited to high-symmetry crystal systems, which significantly hindered the development of such functional materials. Herein, we demonstrate the first construction of four highly crystalline orthorhombic 3D COFs with an unprecedented fmj topology, based on judiciously choosing rotatable monomers.
View Article and Find Full Text PDFRSC Adv
January 2025
Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
Developing high-efficiency, cost-effective, and long-term stable nanostructured catalysts for electrocatalytic water splitting remains one of the most challenging aspects of hydrogen fuel production. Urea electrooxidation reaction (UOR) can produce hydrogen energy from nitrogen-rich wastewater, making it a more sustainable and cheaper source of hydrogen. In this study, we have developed Ni/NiS hybrid structures with cauliflower-like morphology on carbon paper electrodes through the application of dimethylsulfoxide solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!