Remote Migratory Reductive Arylation of Unactivated Alkenes Enabled by Electrochemical Nickel Catalysis.

ChemSusChem

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Published: October 2024

Transition metal-catalyzed cross-coupling reaction between organometallic reagents and electrophiles is a potent method for constructing C(sp)-C(sp) bonds. Given the characters of organometallic reagents, cross-reductive coupling is emerging as an alternative strategy. The resurgence of electrochemistry offers an ideal method for electrochemical reductive of cross-coupling electrophiles. Inspired by the mechanism of electrochemical metal hydride, our study proposed that Ni-H electrochemically catalyze the hydroarylation coupling of unactivated alkenes with aryl halides. 1,1-Diarylalkanes can be produced effectively. This method have advantages including mild conditions, excellent regioselectivity, and satisfactory yields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202402196DOI Listing

Publication Analysis

Top Keywords

unactivated alkenes
8
organometallic reagents
8
remote migratory
4
migratory reductive
4
reductive arylation
4
arylation unactivated
4
alkenes enabled
4
enabled electrochemical
4
electrochemical nickel
4
nickel catalysis
4

Similar Publications

Degradation of 15 halogenated hydrocarbons by 5 unactivated chemical oxidation oxidants.

Environ Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China.

Oxidants used in the ISCO technology usually require activation by activators to degrade contaminants. However, this study investigated degradation of 15 typical halogenated hydrocarbons by five common ISCO oxidants (PS, PMS, HO, KMnO, SPC) without activation in both pure water and real groundwater. Unactivated PS could degrade 14 halogenated hydrocarbons, excluding tetrachloromethane.

View Article and Find Full Text PDF

Asymmetric Heck Silylation of Unactivated Alkenes.

Angew Chem Int Ed Engl

January 2025

Zhejiang Uiversity, Chemistry, 866 Yuhangtang Road, 310058, Hangzhou, CHINA.

Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98% ee.

View Article and Find Full Text PDF

Visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N electron donor-acceptor complexes.

Org Biomol Chem

January 2025

Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

A visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N has been achieved, leading to a series of azidated pyrrolo[1,2-]indoles under photocatalyst-free conditions. Notably, an EDA complex derived from the electron-rich indole derivatives and Togni-N served as the key intermediate in this reaction.

View Article and Find Full Text PDF

Anaerobic 1,2-/1,3-Hydroxytrifluoromethylation of Unactivated Alkenes Enabled by Photoexcited Nitroarenes.

Org Lett

January 2025

State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China.

An anaerobic 1,2-/1,3-hydroxytrifluoromethylation of unactivated alkenes is described. This reaction proceeds in mild and environmentally friendly conditions without photocatalyst and metal catalyst, allowing access to a wide range of β- and γ-trifluoromethyl alcohols. Preliminary mechanistic investigations indicate that the accomplishment of this protocol relies on the dual functionality of the photoexcited triplet nitroarenes, which serve as the oxygen atom source and enable the single-electron transfer (SET) process with CFSONa.

View Article and Find Full Text PDF

We report a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ- and δ,ε-alkenylamines with aryl halides and alkylzinc reagents. The reaction is enabled by amine coordination and can use all primary, secondary, and tertiary amines. The reaction constructs two new C(sp)-C(sp) and C(sp)-C(sp) bonds and produces δ- and ε-arylamines with C(sp)-branching at the γ- and δ-positions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!