A handheld fluorescent platform integrated with a Sm(III)-CdTe quantum dot-based ratiometric nanoprobe for point-of-use determination of phosphate.

Nanoscale

College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.

Published: November 2024

AI Article Synopsis

  • Phosphate (Pi) is essential for physiological processes and environmental health, prompting the need for a simple sensor to quickly detect it for health and conservation purposes.
  • This study presents a dual-emission ratiometric fluorescence sensor that uses samarium ions and cadmium telluride quantum dots for sensitive Pi detection, indicated by a color change from purple to blue due to fluorescence recovery.
  • The developed portable lab-on-paper device allows for quick Pi detection using a smartphone, showing effective performance in environmental and biological samples, which highlights a new approach for affordable and precise target detection.

Article Abstract

Phosphate (Pi) is crucial for various physiological processes and aquatic environments, which emphasizes the need for a simple, on-site sensor to promptly detect Pi for human health and environmental conservation. In this study, we propose a dual-emission ratiometric fluorescence sensor for highly sensitive and visual Pi detection. The sensor employs samarium ions (Sm) as a core component, with cadmium telluride quantum dots (CdTe QDs) and ofloxacin (OFL) serving as signal carriers. The CdTe-Sm(III)-OFL nanoprobe emits a purple fluorescence resulting from the red fluorescence of CdTe QDs and the blue-green fluorescence of OFL. The fluorescence of OFL is quenched by Sm through fluorescence resonance energy transfer (FRET). Upon Pi interaction, the FRET process is disrupted due to the competitive Pi-Sm binding, which leads to the fluorescence recovery of OFL while the red fluorescence of CdTe remains steady. This enables the construction of a ratiometric fluorescent sensor for Pi detection, manifesting as a color change from purple to blue. The sensor demonstrated a linear response for Pi detection within the range of 0.1-75 μM, with a low detection limit of 17.0 nM. By utilizing the distinct fluorescence responses of various physiological phosphates and employing chemometrics, this innovative dual-emission sensor accurately distinguishes among different physiological phosphates. Furthermore, a portable lab-on-paper device based on CdTe-Sm(III)-OFL, coupled with a smartphone-integrated mini-device, is developed for swift Pi detection using an ordinary smartphone. Analytical performance validated on environmental and biological samples demonstrates the sensor's excellent robustness and adaptability. This study introduces a pioneering approach to fabricate ratiometric fluorescence sensors and customize portable, cost-effective mini-devices for precise target detection, thus opening avenues for advanced sensing strategies in various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr03497jDOI Listing

Publication Analysis

Top Keywords

fluorescence
10
ratiometric fluorescence
8
cdte qds
8
red fluorescence
8
fluorescence cdte
8
fluorescence ofl
8
physiological phosphates
8
sensor
6
detection
6
handheld fluorescent
4

Similar Publications

Tungsten disulphide nanosheet modulated fluorescent gold nanocluster immunoprobe for the detection of tau peptide: Alzheimer's disease biomarker.

Anal Methods

January 2025

Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.

The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial.

View Article and Find Full Text PDF

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.

View Article and Find Full Text PDF

In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.

View Article and Find Full Text PDF

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!