A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The cryoprotective effect of peptides and its ice-binding mechanism. | LitMetric

Although discarded as waste, shrimp heads are a potential source of antifreeze peptides, which can be used as cryoprotectants in the food industry. Their utilization in frozen foods can help mitigate the negative effects caused by the freezing technique. hrimp heads were autolyzed, and the shrimp head autolysate (SHA) was separated ultra-filtration and ion exchange chromatography. The antifreeze effect of SHA on the biochemical properties of myofibrillar proteins of peeled shrimps during five freeze-thaw cycles was evaluated. Peptide screening was done using the LC-MS/MS technique. A molecular docking (MD) study of the interaction between ice and shrimp head-derived antifreeze peptides was done. Results showed that shrimp-head autolysate has a maximum thermal hysteresis value of 1.84 °C. During the freeze-thaw cycles, the shrimp-head autolysate exhibited an antifreeze effect on frozen peeled shrimps. 1.0 and 3.0%-SHA groups showed significantly lower freeze denaturation than the negative control group. The muscle tissues of SHA-treated groups were not as severely damaged as the negative control group. The molecular docking study revealed that the shrimp head-AFPs bound to ice hydrogen bonding, and both hydrophilic and hydrophobic amino acid residues were involved in the ice-binding interactions. 6 ice-binding sites were involved in the peptide-ice interaction. Our findings suggest that shrimp head-derived AFPs can be developed into functional additives in frozen foods and add more insights into the existing literature on antifreeze peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513795PMC
http://dx.doi.org/10.1016/j.crfs.2024.100886DOI Listing

Publication Analysis

Top Keywords

antifreeze peptides
12
frozen foods
8
peeled shrimps
8
freeze-thaw cycles
8
molecular docking
8
docking study
8
shrimp head-derived
8
shrimp-head autolysate
8
negative control
8
control group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!