Objective: To develop a method for determining the concentration of axitinib in beagle dog plasma and utilize this method to investigate the pharmacokinetics of orally administered axitinib in beagle dogs.
Methods: Plasma samples were processed using acetonitrile precipitation and analyzed by UPLC-MS/MS with sunitinib as an internal standard (IS). Chromatographic separation was achieved on a Waters Acquisition UPLC BEH C18 column (50 mm × 2.1 mm, 1.7 μm) with a gradient elution of acetonitrile and 0.1 % formic acid. Mass spectrometry uses an electrospray ion source for positive ion detection in a multiple reaction monitoring mode. The monitored ion transitions for axitinib and sunitinib were / 387 → 355.96 and / 399.3 → 282.96, respectively. Six beagle dogs were administered 0.33 mg/kg of axitinib orally, and venous blood samples were collected at 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 h post-dose for pharmacokinetic analysis.
Results: The assay demonstrated a linear range of 0.5-100 ng/mL (r = 0.9992), and the lower limit of quantification was up to 0.5 ng/mL. Precision, as assessed by relative standard deviation (RSD), was within 8.64 % for both intraday and interday variability. The relative error (RE) for precision from -2.77 %-1.20 %. The recovery rate of the analytes exceeded 85.28 % and the matrix effect was approximately 100 %. Plasma samples maintained stability under various conditions, including room temperature storage for 12 h, processed on an automatic sampler at 4 °C for 6 h, three freeze-thaw cycles, and long-term storage at -80 °C for 60 days. Pharmacokinetic parameters were determined using DAS 2.0 software, revealing a half-life (T) of 6.05 h and an area under the curve (AUC ) of 97.13 ng h/mL for axitinib.
Conclusions: The UPLC-MS/MS method developed in this study offers high specificity, rapid analysis, high recovery, excellent linearity, and minimal plasma volume requirements, making it well-suited for pharmacokinetic and drug interaction studies in beagles dogs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513594 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e39422 | DOI Listing |
Biomater Sci
January 2025
Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.
View Article and Find Full Text PDFBiopharm Drug Dispos
January 2025
Bioavailability Research Project, Formulation Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan.
Establishment of a suitable animal model to evaluate sustained release (SR) formulations is very important because it reduces the development time of SR formulations. Beagle dogs are often used to evaluate prototype formulations since they can be directly administered powder, such as drug substance. However, the physiological condition of dogs is very different to that of humans.
View Article and Find Full Text PDFNat Commun
December 2024
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).
View Article and Find Full Text PDFFront Vet Sci
December 2024
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.
Introduction: We assessed corn oil's oral effectiveness in detecting small bowel changes in healthy dogs through ultrasonography, endoscopy, and histopathology. We hypothesize that corn oil ingestion will not significantly increase the visibility of lymphatics and lacteals in healthy dogs.
Methods: Five healthy male beagles were studied under institutional guidelines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!